THE UNIVERSITY OF THE STATE OF NEW YORK • THE STATE EDUCATION DEPARTMENT • ALBANY, NY 12234 Reference Tables for Physical Setting/PHYSICS 2006 Edition

List of Physical Constants		
Name	Symbol	Value
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity	g	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Speed of sound in air at STP		$3.31 \times 10^{2} \mathrm{~m} / \mathrm{s}$
Mass of Earth		$5.98 \times 10^{24} \mathrm{~kg}$
Mass of the Moon		$7.35 \times 10^{22} \mathrm{~kg}$
Mean radius of Earth		$6.37 \times 10^{6} \mathrm{~m}$
Mean radius of the Moon		$1.74 \times 10^{6} \mathrm{~m}$
Mean distance—Earth to the Moon		$3.84 \times 10^{8} \mathrm{~m}$
Mean distance-Earth to the Sun		$1.50 \times 10^{11} \mathrm{~m}$
Electrostatic constant		$8.99 \times 10^{9} \mathrm{~N} \bullet \mathrm{~m}^{2} / \mathrm{C}^{2}$
1 elementary charge		$1.60 \times 10^{-19} \mathrm{C}$
1 coulomb (C)		$6.25 \times 10^{18} \mathrm{elementary}$ charges
1 electronvolt (eV)	m_{e}	$1.60 \times 10^{-19} \mathrm{~J}$
Plancks constant	m_{n}	$6.63 \times 10^{-34} \mathrm{~J} \bullet \mathrm{~s}$
1 universal mass unit (u)	$9.31 \times 10^{2} \mathrm{MeV}$	
Rest mass of the electron	$1.67 \times 10^{-31} \mathrm{~kg}$	
Rest mass of the proton		$1.67 \times 10^{-27} \mathrm{~kg}$
Rest mass of the neutron		

Prefixes for Powers of $\mathbf{1 0}$		
Prefix	Symbol	Notation
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

Approximate Coefficients of Friction		
	Kinetic	Static
Rubber on concrete (dry)	0.68	0.90
Rubber on concrete (wet)	0.58	
Rubber on asphalt (dry)	0.67	0.85
Rubber on asphalt (wet)	0.53	
Rubber on ice	0.15	
Waxed ski on snow	0.05	0.14
Wood on wood	0.30	0.42
Steel on steel	0.57	0.74
Copper on steel	0.36	0.53
Teflon on Teflon	0.04	

The Electromagnetic Spectrum

Wavelength in a vacuum (m)

Frequency (Hz)

Absolute Indices of Refraction $\left(f=5.09 \times 10^{14} \mathrm{~Hz}\right)$	
Air	1.00
Corn oil	1.47
Diamond	2.42
Ethyl alcohol	1.36
Glass, crown	1.52
Glass, flint	1.66
Glycerol	1.47
Lucite	1.50
Quartz, fused	1.46
Sodium chloride	1.54
Water	1.33
Zircon	1.92

Energy Level Diagrams

Hydrogen

Energy Levels for the Hydrogen Atom

Classification of Matter

Particles of the Standard Model

Quarks

Leptons

electron
neutrino
ν_{e}
0

muon
neutrino
ν_{μ}
0

tau
neutrino
ν_{τ}
0

Note: For each particle, there is a corresponding antiparticle with a charge opposite that of its associated particle.

Electricity

$F_{e}=\frac{k q_{1} q_{2}}{r^{2}}$
$E=\frac{F_{e}}{q}$
$V=\frac{W}{q}$
$I=\frac{\Delta q}{t}$
$R=\frac{V}{I}$
$R=\frac{\rho L}{A}$
$P=V I=I^{2} R=\frac{V^{2}}{R}$
$W=P t=V I t=I^{2} R t=\frac{V^{2} t}{R}$

Series Circuits

$I=I_{1}=I_{2}=I_{3}=\ldots$
$V=V_{1}+V_{2}+V_{3}+\ldots$
$R_{e q}=R_{1}+R_{2}+R_{3}+\ldots$

Circuit Symbols

$$
\begin{aligned}
& \pm \text { cell } \\
& \stackrel{\perp}{\bar{\mp}} \text { battery } \\
& \text { _- switch } \\
& \text {-(V)- voltmeter } \\
& \text {-(A) ammeter } \\
& W \text { resistor } \\
& \sqrt{W} \text { variable resistor } \\
& \text {-(ele) lamp }
\end{aligned}
$$

$A=$ cross-sectional area
$E=$ electric field strength
$F_{e}=$ electrostatic force
$I=$ current
$k=$ electrostatic constant
$L=$ length of conductor
$P=$ electrical power
$q=$ charge
$R=$ resistance
$R_{e q}=$ equivalent resistance
$r=$ distance between centers
$t=$ time
$V=$ potential difference
$W=$ work (electrical energy)
$\Delta=$ change
$\rho=$ resistivity

Parallel Circuits

$I=I_{1}+I_{2}+I_{3}+\ldots$
$V=V_{1}=V_{2}=V_{3}=\ldots$
$\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots$

Resistivities at $\mathbf{2 0}^{\circ} \mathbf{C}$	
Material	Resistivity $(\Omega \bullet \mathrm{m})$
Aluminum	2.82×10^{-8}
Copper	1.72×10^{-8}
Gold	2.44×10^{-8}
Nichrome	$150 . \times 10^{-8}$
Silver	1.59×10^{-8}
Tungsten	5.60×10^{-8}

Waves

$v=f \lambda$	$c=$ speed of light in a vacuum
$T=\frac{1}{f}$	$f=$ frequency
$\theta_{i}=\theta_{r}$	$n=$ absolute index of refraction
$n=\frac{c}{v}$	$T=$ period
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$	$v=$ velocity or speed
$\frac{n_{2}}{n_{1}}=\frac{v_{1}}{v_{2}}=\frac{\lambda_{1}}{\lambda_{2}}$	$\lambda=$ wavelength

Modern Physics

$E_{\text {photon }}=h f=\frac{h c}{\lambda}$	$c=$ speed of light in a vacuum
$E_{\text {photon }}=E_{i}-E_{f}$	$E=$ energy
$E=m c^{2}$	$f=$ frequency
	$h=$ Planck's constant
	$m=$ mass
	$\lambda=$ wavelength

Geometry and Trigonometry

Rectangle

$A=b h$
Triangle

$$
A=\frac{1}{2} b h
$$

Circle

$$
\begin{aligned}
& A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

Right Triangle

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& \sin \theta=\frac{a}{c} \\
& \cos \theta=\frac{b}{c} \\
& \tan \theta=\frac{a}{b}
\end{aligned}
$$

$A=$ area
$b=$ base
$C=$ circumference
$h=$ height
$r=$ radius

Mechanics

d	$a=$ acceleration
$=\bar{t}$	$a_{c}=$ centripetal acceleration
$a=\underline{\Delta v}$	$A=$ any vector quantity
	$d=$ displacement or distance
$v_{f}=v_{i}+a t$	$E_{T}=$ total energy
$d=v_{i} t+\frac{1}{2} a t^{2}$	$F=$ force
	$F_{c}=$ centripetal force
$v_{f}{ }^{2}=v_{i}{ }^{2}+2 a d$	$F_{f}=$ force of friction
$A_{y}=A \sin \theta$	$F_{g}=$ weight or force due to gravity
	$F_{N}=$ normal force
$A_{x}=A \cos \theta$	$F_{\text {net }}=$ net force
$a=\frac{F_{n e t}}{m}$	$F_{s}=$ force on a spring
$F_{f}=\mu F_{N}$	$g=$ acceleration due to gravity or gravitational field strength
$F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$	$G=$ universal gravitational constant $h=$ height
	$J=$ impulse
$g=\frac{8}{m}$	$k=$ spring constant
$p=m v$	$K E=$ kinetic energy
	$m=$ mass
$p_{\text {before }}=p_{\text {after }}$	$p=$ momentum
$J=F_{n e t} t=\Delta p$	$P=$ power
$F_{s}=k x$	$P E=$ potential energy
$P E_{s}=\frac{1}{2} k x^{2}$	$P E_{S}=$ potential energy stored in a spring $Q=$ internal energy
$F_{c}=m a_{c}$	$r=$ radius or distance between centers
$a_{c}=\frac{v^{2}}{r}$	$t=$ time interval
	$v=$ velocity or speed
$\Delta P E=m g \Delta h$	$\bar{v}=$ average velocity or average speed
$K E=\frac{1}{2} m v^{2}$	$W=$ work
$W=F d=\Delta E_{T}$	$x=$ change in spring length from the equilibrium position
$E_{T}=P E+K E+Q$	$\Delta=$ change
$L_{T}=P L+K E+Q$	$\theta=$ angle
$P=\frac{W}{t}=\frac{F d}{t}=F \bar{v}$	$\mu=$ coefficient of friction

