Utilizing the New Teacher-Support Features in the...

New York State Next Generation Mathematics Learning Standards

Brian Cohen bcohen@skanschools.org

Goal

Gain more insight into the types of support features built into the new standards, where they came from, and how they support implementation.

2. Dig into the standards at your grade level
3. Share \& discuss worthwhile supports
4. Highlight a couple more substantial changes to the content of the standards (if time allows)

CCSS \rightarrow NYS NGMS

In 2012, at UC Berkeley, Bill McCallum talks about the worthwhile residue left behind when the CCSS-M collapses. He offers, for example, that well developed research-based curricula may endure and benefit students long after the CCSS-M.

As NYS moves forward from the CCSS, we wanted to:

- Keep some the good parts.
- Leave behind what didn't work for US.
- Make improvements and upgrades wherever possible.

Standards Document - Current

Know number names and the count sequence.

1. Count to 100 by ones and by tens.
2. Count forward beginning from a given number within the known sequence (instead of having to begin at 1)
3. Write numbers from 0 to 20 . Represent a number of objects with a written numeral $0-20$ (with 0 representing a count of no objects).
Count to tell the number of objects.
4. Understand the relationship between numbers and quantities; connect counting to cardinality.
a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object
b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.
c. Understand that each successive number name refers to a quantity that is one larger
d. Develop understanding of ordinal numbers (first through tenth) to describe the relative position and magnitude of whole numbers.
5. Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.
```

\section*{Compare numbers.}
```

6. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. ${ }^{1}$
7. Compare two numbers between 1 and 10 presented as written numerals.
```

\footnotetext{
\({ }^{1}\) Include groups with up to ten objects
}

\section*{PARCC Model Content Frameworks}

Mathematics
Grades 3-11
Version 4.0
December 2014

\section*{PARCC Model Content Frameworks}

\section*{A Companion to the Common Core State Standards}

\section*{Mathematics:}
kindergarten through Grade 2

September 2014

\section*{Standards Document - Current}

Examples of Key Advances from Kindergarten to Grade 1
- Students gradually come to employ mental strategies (such as counting on and making ten) that make use of embedded concepts of number and the properties of addition and subtraction; by contrast, kindergarten students determine sums and differences primarily by representing problems with objects or drawings.

Fluency Expectations or Examples of Culminating Standards
1.OA.C. 6 Add and subtract within 20, demonstrating fluency for addition and subtraction within 10 . Use strategies such as counting on; making ten (e.g., \(8+6=8+2+4=10+4=14\) ); decomposing a number leading to a ten (e.g., \(13-4=13-3-1=10-1=9\) ); using the relationship between addition and subtraction (e.g., knowing that \(8+4=12\), one knows \(12-8=4\) ); and creating equivalent but easier or known sums (e.g., adding \(6+7\) by creating the known equivalent \(6+6+1=12+1=13\) ).

\section*{Examples of Major Within-Grade Dependencies}
- 1.NBT.B.2 describes the place-value foundations for 1.NBT.B.3 and 1.NBT.C.4. Comparing numbers (1.NBT.B.3) involves thinking about the sizes of tens and ones, and adding two-digit numbers (1.NBT.C.4) involves adding tens with tens and ones with ones, and sometimes composing a ten. These ideas and methods rest on an understanding of the place-value units and the use of visual models of these units in solving and explaining problems using these standards.

\section*{Standards Document - Current}

\section*{The importance of specifying the whole}


\title{
ore
}

Without specifying the whole it is not reasonable to ask what fraction is represented by the shaded area. If the left square is draft) the whole, the shaded The word fluent is used in the Standards to mean "fast and acentire rectangle is the curate." Fluency in each grade involves a mixture of just knowing some answers, knowing some answers from patterns (e.g., "adding 0 yields the same number"), and knowing some answers from the use of strategies. It is important to push sensitively and encouragingly toward fluency of the designated numbers at each grade level, recognizing that fluency will be a mixture of these kinds of thinking which may differ across students. The extensive work relating addition and subtraction means that subtraction can frequently be solved by thinking of the related addition, especially for smaller numbers. It is also important that these patterns, strategies and decomposi-

Draft, 5/29/2011, comment at commoncoretools.wordpress.com.

\section*{Standards Document - Current}

\section*{Counting \& Cardinality}

Know number names and the count sequence.
1. Count to 100 by ones and by tens.
2. Count forward beginning from a given number within the known sequence (instead of having to begin at 1 ).
3. Write numbers from 0 to 20 . Represent a number of objects with a written numeral \(0-20\) (with 0 representing a count of no objects).

Count to tell the number of objects.
4. Understand the relationship between numbers and quantities; connect counting to cardinality.
a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.
b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.
c. Understand that each successive number name refers to a quantity that is one larger
d. Develop understanding of ordinal numbers (first through tenth) to describe the relative position and magnitude of whole numbers.
5. Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.

Compare numbers.
6. Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using matching and counting strategies. \({ }^{1}\)
7. Compare two numbers between 1 and 10 presented as written numerals.

\footnotetext{
\({ }^{1}\) Include groups with up to ten objects
}

\section*{Standards Document - A better way!}


\section*{Standards Document - A better way!}

\section*{NY-2.OA}

Operations and Algebraic Thinking
Add and subtract within 20 .
2a. Fluently add and subtract within 20 using mental strategies. Strategies could include:


\section*{Standards Document - A better way!}

NY-2.OA
Operations and Algebraic Thinking
Add and subtract within 20 .
2a. Fluently add and subtract within 20 using mental strategies. Strategies could include
- counting on;


\section*{Standards Document - A better way!}

NY-2.OA
Operations and Algebraic Thinking
Add and subtract within 20
2a. Fluently add and subtract within 20 using mental strategies. Strategies could include:
- counting on

- making ten: \(8+2+4=\) \(10+4=14\)
- decomposing a number leading to a ten;

- using the relationship between addition and subtraction; and
- creating equivalent but easier or known sums.

2b. Know from memory all sums within 20 of two one-digit numbers.


\section*{Standards Document - A better way!}

Note on Fluency with Facts:
- Fluently adding and subtracting within 20 (NY-2.OA.2) means students can find sums and differences within 20 reasonably quickly, and say or write it. Fluency involves a mixture of just knowing some answers, knowing some answers from patterns, and knowing some answers from the use of strategies. \({ }^{(10)}\) Reaching fluency will take much of the year for many students. For more on how children develop fluency, see \(K-5\) Progression on Counting and Cardinality and Operations and Algebraic Thinking, pp. 18-19 and Adding it Up, pp. 182-195.
Note on Fluency vs. Knowing from Memory:
- The standards intentionally distinguish between asking for fluency with addition
- and subtraction (NY-2.OA.2a) and asking students to know from memory addition facts (NY-2.OA.2b). Fluency means students are fast, accurate, flexible, and have understanding. They use strategies efficiently. \({ }^{(12)}\) By the end of the K-2
. grade span, students have sufficient experience with these strategies to know from memory all single-digit sums. \({ }^{(10)}\)
2b. Ko
Note on Fluency with Facts
- Fluently adding and subtracting within 20 ( \(\mathrm{NY}-2 . \mathrm{OA} .2\) ) means students can find sums and differences within 20 reasonably quickly, and say or write it. Fluency involves a mixture of just knowing some answers, knowing some answers from patterns, and knowing some answers from the use of strategies. \({ }^{\text {[10) }}\) Reaching fluency will take much of the year for many students. For more on how children develop fluency, see K-5 Proaression on Counting and Cordinality and Operations and Algebraic Thinking, pp. 18-19 and Adding it UP, pp. 182-195.
Note on Fluency vs. Knowing from Memary:
- The standards intentionally distinguish between asking for fluency with addition and subtraction ( \(\mathrm{NY}-\mathrm{2} . \mathrm{OA} .2 \mathrm{a}\) ) and asking students to know from memory addition facts (NY-2.OA.2b). Fluency means students are fast, accurate, flexible, and have understanding. They use strategies efficiently. \({ }^{127]}\) By the end of the \(\mathrm{K}-2\) grade span, students have sufficient experience with these strateglies to know from memory all single-digit sums. \({ }^{\text {dio }}\)


\section*{Standards Document - A better way!}


Build new functions from existing functions.
3a. Using \(f(x)+k, k f(x)\), and \(f(x+k)\) :
i) identify the effect on the graph when replacing \(f(x)\) by \(f(x)+k, k f(x)\), and \(f(x+k)\) for specific values of \(k\) (both positive and negative);
ii) find the value of \(k\) given the graphs;
iii) write a new function using the value of \(k\); and
iv) use technology to experiment with cases and explore the effects on the graph
(Shared standard with Algebra II)
Note on theWWord Explore:

\section*{Standards Document - A better way!}
- Standards tagging is distinct from, but connected to CCSS
- Embed support at point-of-use:
o "Coherence Links" to show the vertical coherence of the standards and help teachers differentiate (especially for students with IEPs and ELLs).
o Notes and illustrations to clarify individual standards, answer FAQs, or otherwise support implementation
o "Within-Grade Connections" to show horizontal coherence
o Notes highlighting connections between the Standards for Mathematical Practice and content standards
o footnotes from the original standards
- Linked navigation
- HS standards organized by course (not by Conceptual Category) and tagged to make the course clear
- Algebra I and Algebra II shared standards clearly marked

\section*{Treasure Hunt}
\begin{tabular}{|c|c|c|c|}
\hline & & Your Grade Level & +1 \\
\hline \begin{tabular}{c} 
Fluency with Procedures \\
\(2-\) A2
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
Illustration merged from \\
CCSS appendix \\
PK-5
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
Illustration merged from \\
outside source or new \\
K-4
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
Spacing/alignment \\
PK - A2
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
Within-Grade Connection \\
PK - (+)
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
Connecting MPs \\
PK - A2
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
Note on left \\
PK - footnote from CCSS \\
A1 \& A2: shared standard
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
Coherence Links \\
PK - (+)
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
e.g. \\
PK - (+)
\end{tabular} & & & \\
\hline \begin{tabular}{c} 
Note on right (citation) \\
PK- (+)
\end{tabular} & & & \\
\hline
\end{tabular}

\section*{Treasure Hunt}

Share \& Discuss
\begin{tabular}{|c|c|c|c|}
\hline & -1 & Your Grade Level & +1 \\
\hline Fluency with Procedures
\[
2
\] & & & \\
\hline Illustration merged from CC88 appendix PK. 5 & & & \\
\hline Illustration merged from outbide source or new K. 4 & & & \\
\hline \(\underset{\substack{\text { Spacing alignnest } \\ \text { PK } \\ \text { A2 }}}{\text { and }}\) & & & \\
\hline Within-Grade Connection PK - (*) & & & \\
\hline Connecting MP3 & & & \\
\hline Note on left
PK. 8 . fodnole from CCSs A1 8 A2 shared standard & & & \\
\hline Coherence Links & & & \\
\hline \[
P_{x}^{e g}(\cdot(\cdot)
\] & & & \\
\hline Note on right (eitation) PK - (*) & & & \\
\hline
\end{tabular}

\section*{Standards Themselves - Current}
\begin{tabular}{l|c}
\multicolumn{1}{c|}{ PK.OA.2 } & Kndg. \\
\hline \begin{tabular}{l} 
Duplicate and extend (e.g., What \\
comes next?) simple patterns using \\
concrete objects.
\end{tabular} & None \\
\hline
\end{tabular}

\section*{Standards Themselves - Better coherence!}
\begin{tabular}{l|l}
\multicolumn{1}{c|}{ PK.OA.2 } & \multicolumn{1}{c}{ NY-K.OA.6 } \\
\hline \begin{tabular}{l} 
Duplicate and extend (e.g., What \\
comes next?) simple patterns using \\
concrete objects.
\end{tabular} & \begin{tabular}{l} 
Duplicate, extend, and create simple \\
patterns using concrete objects.
\end{tabular} \\
&
\end{tabular}

\section*{Standards Themselves - Better clarity!}

\section*{4.MD. 1}

Know relative sizes of measurement units within one system of units including \(\mathrm{km}, \mathrm{m}, \mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}\), \(\mathrm{oz} . ; \mathrm{l}, \mathrm{ml} ; \mathrm{hr}, \mathrm{min}\), sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...

\section*{Standards Themselves - Better clarity!}

\section*{4.MD. 1}

Know relative sizes of measurement units within one system of units including \(\mathrm{km}, \mathrm{m}, \mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}\), oz ; \(\mathrm{l}, \mathrm{ml} ; \mathrm{hr}, \mathrm{min}\), sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs \((1,12),(2,24),(3,36), \ldots\)

\section*{p. 64}

\section*{NY-4.MD \\ Measurement and Data}

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
1. Know relative sizes of measurement units: ft., in.; km, m, cm

\footnotetext{
Know the conversion factor and use it to convert measurements in a larger unit in terms of a smaller unit: ft., in.; km, m, cm; hr., min., sec.
Given the conversion factor, convert all other measurements within a single system of measurement from a larger unit to a smaller unit.

Record measurement equivalents in a two-column table.
}

\section*{Standards Themselves - Better clarity!}

\section*{3.OA. 8}

Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. \({ }^{3}\)
\({ }^{3}\) This standard is limited to problems posed with whole numbers and having whole number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).

\section*{p. 48}
5.OA. 1

Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

\section*{p. 68}

\section*{Standards Themselves - Better clarity!}
3.OA. 8
Solve two-step word problems using the four operations. Represent these problems using equations
with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental
computation and estimation strategies including rounding. \({ }^{3}\)
3This standard is limited to problems posed with whole numbers and having whole number answers;
students should know how to perform operations in the conventional order when there are no
parentheses to specify a particular order (Order of Operations).
p. 48

NY-3.OA
Solve problems involving the four
8. Solve two-step word probler
using the four operations.
a. Represent these proble: unknown quantity.
b. Assess the reasonablen including rounding.

Coherence: NY-2.OA. \(1 \rightarrow\) NY-3.OA. \(8 \rightarrow\) NY-4.OA. 3
Note: Two-step problems need not be represented by a single expression or equation.

\section*{Standards Themselves - Better clarity!}

\section*{5.OA. 1 \\ Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.}

\section*{p. 68}
\begin{tabular}{l|lll} 
& Coherence: & NY-5.OA. \(1 \rightarrow\) NY-6.EE. 2
\end{tabular}

\section*{Standards Themselves - Current}


\section*{Standards Themselves - Better coherence!}


\section*{Standards Themselves - Better coherence!}
\begin{tabular}{|c|c|}
\hline 2.G. 1 & NY-3.G. 1 \\
\hline Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. identif triangles, quadribterals, pentagons, hexagons, and cubes. & Recognize and classify polygons based on the number of sides and vertices (triangles, quadrilaterals, pentagons, and hexagons). Identify shapes that do not belong to one of the \\
\hline \begin{tabular}{l}
NY-2.G. 1 \\
Classify twodimensional figures as polygons or nonpolygons.
\end{tabular} & \\
\hline
\end{tabular}

\section*{Standards Themselves - Better coherence!}


\section*{Standards Themselves - Better coherence!}
\begin{tabular}{l|l|l} 
NY-2.G.1 \\
\begin{tabular}{l} 
Classify two- \\
dimensional figures as \\
polygons or non- \\
polygons.
\end{tabular} & \begin{tabular}{l} 
NY-3.G.1 \\
Recognize and classify \\
polygons based on the \\
number of sides and \\
vertices (triangles, \\
quadrilaterals, \\
pentagons, and \\
hexagons). Identify \\
shapes that do not \\
belong to one of the \\
given subcategories.
\end{tabular} & \begin{tabular}{l} 
5.G.3 \\
Understand that \\
attributes belonging to \\
a category of two- \\
dimensional figures also \\
belong to all \\
subcategories of that \\
category. For example,
\end{tabular} \\
& \begin{tabular}{l} 
all rectangles have four \\
right angles and squares \\
are rectangles, so all \\
squares have four right \\
angles.
\end{tabular} \\
& & \begin{tabular}{l} 
5.G.4 \\
Classify two- \\
dimensional figures in a \\
hierarchy based on \\
properties.
\end{tabular} \\
\hline
\end{tabular}

\section*{Standards Themselves - Better coherence!}
\begin{tabular}{l|l}
\(\frac{\text { NY-2.G.1 }}{\text { Classify two- }}\)\begin{tabular}{l} 
dimensional figures as \\
polygons or non- \\
polygons.
\end{tabular} & \begin{tabular}{l} 
NY-3.G.1 \\
Recognize and classify \\
polygons based on the \\
number of sides and \\
vertices (triangles, \\
quadrilaterals, \\
pentagons, and \\
hexagons). Identify \\
shapes that do not \\
belong to one of the \\
given subcategories.
\end{tabular} \\
\hline
\end{tabular}
NY-5.G. 3
Understand that
attributes belonging to
a category of two-
dimensional figures also
belong to all
subcategories of that
category. For example,
all rectangles have four
right angles and
squares are rectangles,
so all squares have four
right angles.

\section*{NY-5.G. 4}

Classify two-
dimensional figures in a hierarchy based on properties.

\section*{Standards Themselves - Better coherence!}


\section*{Standards Themselves - Better coherence!}


Standards Themselves - Better coherence!


\section*{Standards Themselves - Better coherence!}


NY-4.G. 1
Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures.

\section*{4.G. 2}

Classify twodimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size.
Recognize right triangles as a category, and identify right triangles.

\section*{NY-5.G. 3}

Understand that attributes belonging to a category of twodimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.

\section*{NY-5.G. 4}

Classify two-
dimensional figures in a hierarchy based on properties.

\section*{Standards Themselves - Better coherence!}


\section*{Standards Themselves - Better coherence!}

\section*{NY-4.G. 1}

Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
4.G. 2

Classify two-dimensional
figures based on the
presence or absence of
parallelor perpendicular ines, or the presence or absence of angles of a
specified size. Recognize
right triangles as a
categary, and ldentify right triangles.

\section*{NY-4.G. 2}

Identify and name triangles based on angle size (right, obtuse, acute).

Identify and name all quadrilaterals with two pairs of parallel sides as parallelograms.

Identify and name all quadrilaterals with four right angles as rectangles.

\section*{Standards Themselves - Better coherence!}
\begin{tabular}{|l|l|l|l|}
\hline NY-2.G.1 \\
\begin{tabular}{l} 
Classify two- \\
dimensional figures as \\
polygons or non- \\
polygons.
\end{tabular} & \begin{tabular}{l} 
NY-3.G.1 \\
Recognize and classify \\
polygons based on the \\
number of sides and \\
vertices (triangles, \\
quadrilaterals, \\
pentagons, and \\
hexagons). Identify \\
shapes that do not \\
belong to one of the \\
given subcategories.
\end{tabular} & \begin{tabular}{l} 
NY-4.G.1 \\
Draw points, lines, line \\
segments, rays, angles \\
(right, acute, obtuse), \\
and perpendicular and \\
parallel lines. Identify \\
these in two- \\
dimensional figures.
\end{tabular} & \begin{tabular}{l}
\(\frac{\text { NY-5.G.3 }}{\text { Understand that }}\)\begin{tabular}{l} 
attributes belonging to \\
a category of two- \\
dimensional figures also \\
belong to all \\
subcategories of that \\
category. For example,
\end{tabular} \\
all rectangles have four \\
right angles and \\
squares are rectangles, \\
so all squares have four \\
right angles.
\end{tabular} \\
& \begin{tabular}{l} 
NY-4.G.2 \\
Identify and name \\
triangles based on \\
angle size (right, \\
obtuse, acute). \\
Identify and name all \\
quadrilaterals with two \\
pairs of parallel sides as \\
parallelograms. \\
Identify and name all \\
quadrilaterals with four \\
right angles as \\
rectangles.
\end{tabular} & \begin{tabular}{l} 
NY-5.G.4
\end{tabular} & \begin{tabular}{l} 
Classify two- \\
dimensional figures in a \\
hierarchy based on \\
properties.
\end{tabular} \\
\hline
\end{tabular}


\section*{Utilizing the New Teacher-Support Features in the...}
```

