Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards

Number and Quantity
The Complex Number System (N-CN)

NYS Plus Mathematics Learning Standards
 Number and Quantity
 The Complex Number System (N-CN)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{y} \\ & \vdots \\ & \frac{\hbar}{0} \end{aligned}$		N-CN.B.4+	Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	4a. Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and convert between rectangular and polar forms of a given complex number.	Removed "Explain why". Also, unpacked standard into two separate parts.
				4b. Determine whether rectangular or polar form is more efficient given the context.	
		N-CN.B.5+	Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+\sqrt{ } 3 i)^{3}=8$ because $(-1+\sqrt{ } 3 i)$ has modulus 2 and argument 120°.	5. Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+\sqrt{ } 3 i)^{3}=8$ because $\left(-1+\sqrt{ } 3\right.$ i) has modulus 2 and argument 120°. For example: DeMoivre's Theorem	Included one of the main applications as an example otherwise left unchanged.
		N-CN.B.6+	Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.	6a. Calculate the distance between two points in the complex plane.	Separated the standard since it addresses two different concepts.
				6 b . Find the midpoint of the segment whose endpoints are in the complex plane.	

Submit comments on the draft NYS Plus Mathematics Learning Standards

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{NYS Plus Mathematics Learning Standards} \\
\hline \multicolumn{6}{|c|}{\begin{tabular}{l}
Number and Quantity \\
The Complex Number System (N-CN)
\end{tabular}} \\
\hline \& \& Standard Code \& Current Standard \& Revised Standard Recommendation for 2018-19 \& Additional Information/Notes \\
\hline \multirow[t]{2}{*}{는
\(\stackrel{H}{3}\)
\(\frac{3}{0}\)} \& \& N-CN.C.8+

N-CN.C.9+ \& | Extend polynomial identities to the complex numbers. |
| :--- |
| For example, rewrite $x^{2}+4$ as $(x+2 i)(x-2 i)$. |
| Know the Fundamental Theorem of Algebra; show | \& NO CHANGE.

State and apply the Fundamental Theorem of Algebra. \&

\hline \& \& N-CN.C.9+ \& Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials. \& State and apply the Fundamental Theorem of Algebra. \& "Know" is ambiguous and Fundamental Theorem of Algebra applies to all polynomials not just quadratics.

\hline
\end{tabular}

Submit comments on the draft NYS Plus Mathematics Learning Standards

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Number and Quantity Vector and Matrix Quantities (N-VM)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\#} \\ & \vdots \\ & \frac{\#}{3} \end{aligned}$	0000000000000000000000	N-VM.B.4+	Add and subtract vectors.	Add and subtract vectors analytically and geometrically.	Used clear and concise language.
		N-VM.B.4a+	Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.	REMOVE STANDARD	By adding analytically and geometrically in previous standard N-VM.B.4+ .
		N-VM.B.4b+	Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.	REMOVE STANDARD	By adding analytically and geometrically in previous standard N-VM.B.4+.
		N-VM.B.4c+	Understand vector subtraction $v-w$ as $v+(-w)$, where $-w$ is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.	REMOVE STANDARD	By adding analytically and geometrically in previous standard N-VM.B.4+.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Number and Quantity Vector and Matrix Quantities (N-VM)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{y} \\ & \text { N } \\ & \frac{3}{U} \end{aligned}$		N-VM.B.5+	Multiply a vector by a scalar.	Multiply a vector by a scalar analytically and geometrically.	Used clear and concise language
		N-VM.B.5a+	Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c\left(v_{x}, v_{y}\right)=\left(c v_{x}, c v_{y}\right)$.	REMOVE STANDARD	By adding analytically and geometrically in previous standard N-VM.B.5+.
		N-VM.B.5b+	Compute the magnitude of a scalar multiple cv using $\|\|c v\|\|=\|c\| v$. Compute the direction of cv knowing that when $\|c\| v \neq 0$, the direction of $c v$ is either along $v($ for $c>0$) or against $v($ for $c<0)$.	REMOVE STANDARD	By adding analytically and geometrically in previous standard N-VM.B.5+.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards
 Number and Quantity
 Vector and Matrix Quantities (N-VM)

| | | Standard
 Code | Current Standard | Revised Standard Recommendation for 2018-19 |
| :--- | :--- | :--- | :--- | :--- | :--- | Additional Information/Notes

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards

Algebra

Arithmetic with Polynomials and Rational Expressions (A-APR)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		A-APR.C.5+	Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. The Binomial Theorem can be proved by mathematical induction or by a combinatorial argument.	Use the Binomial Theorem for the expansion of $(x+y)^{n}$ for a positive integer n.	Proof by mathematical induction does not exist anywhere in the standards. "Know" is ambiguous.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards

Algebra
Arithmetic with Polynomials and Rational Expressions (A-APR)

| | | $\begin{array}{c}\text { Standard } \\ \text { Code }\end{array}$ | Current Standard | Revised Standard Recommendation for 2018-19 |
| :--- | :--- | :---: | :--- | :--- | :--- |
| | | $\begin{array}{l}\text { A-APR.D.7+ }\end{array}$ | $\begin{array}{l}\text { Understand that rational expressions form a system } \\ \text { analogous to the rational numbers, closed under } \\ \text { addition, subtraction, multiplication, and division by } \\ \text { a nonzero rational expression; add, subtract, }\end{array}$ | NO CHANGE. |
| multiply, and divide rational expressions. | | | | |$]$

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Algebra Reasoning with Equations and Inequalities (A-REI)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{ \pm} \\ & \stackrel{H}{3} \end{aligned}$		A-REI.C.6b+	ADDITION Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. (Shared with Algebra I) PARCC/NYSED: i) Tasks are limited to 3×3 systems only. Systems of 3 linear equations with 3 variables only.	6 b. Solve systems of linear equations in three variables.	Moved from A2. This part of the standard fits better with matrix standards. See revised A-REI.C.6a for Algebra I. A-REI.C. 6 is currently shared with Algebra I and II.
		A-REI.C.8+	Represent a system of linear equations as a single matrix equation in a vector variable.	NO CHANGE.	
		A-REI.C.9+	Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).	NO CHANGE.	

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Functions Interpreting Functions (F-IF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{ \pm} \\ & \vdots \\ & \frac{5}{0} \end{aligned}$		F-IF.C.7d+	Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	NO CHANGE.	

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Functions Building Functions (F-BF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\#} \\ & \stackrel{H}{3} \\ & \hline \end{aligned}$		F-BF.A.1c+	Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.	NO CHANGE.	

NYS Plus Mathematics Learning Standards

Functions

Building Functions (F-BF)

NYS Plus Mathematics Learning Standards					
Functions Trigonometric Functions (F-TF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		F-TF.A.3+	Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosines, and tangent for $x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number.	Move standard to Geometry (limited to degrees and quadrants 1 and 2 on the unit circle). The rest of the standard is removed.	Since we are including the Laws of Sines and Cosines in Geometry to include all triangles (instead of limited to right triangles), we need to address using trigonometric ratios of obtuse angles. It's also a logical introduction of the unit circle, which is built upon in Algebra II in F.TF.A.2. The angles are specified here to restrict angle measurement to degrees, and to focus on the special triangles for the introduction of the unit circle.
$\begin{aligned} & \overline{\#} \\ & \stackrel{\rightharpoonup}{U} \end{aligned}$		F-TF.A.4+	Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.	Move standard to Algebra II.	

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Functions Trigonometric Functions (F-TF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		F-TF.B.6+	Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	NO CHANGE.	
$\begin{aligned} & \grave{\#} \\ & \stackrel{H}{3} \\ & \hline \end{aligned}$		F-TF.B.7+	Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.	Use inverse functions to solve trigonometric equations that arise in modeling contexts, evaluate the solutions using technology, and interpret them in terms of the context.	Replaced semicolon with comma.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards

Functions
Trigonometric Functions (F-TF)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{む} \\ & \stackrel{\rightharpoonup}{n} \\ & \frac{3}{0} \end{aligned}$		F-TF.C.9+	Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.	NO CHANGE.	

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Geometry Similarity, Right Triangles and Trigonometry (G-SRT)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \overline{\#} \\ & \stackrel{H}{U} \end{aligned}$	D. Apply trigonometry to general triangles.	G-SRT.D.9+	Derive the formula $A=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.	Moved standard to Geometry.	Including this standard in the Geometry course is consistent with the goal of achieving mastery of the trigonometric ratios sine, cosine and tangent. This is a natural progression from right triangles to all triangles. This standard was differentiated into an assessable and non-assessable part with the utilization of the word "explore", specifically the derivation is important for understanding but not appropriate for summative assessment. However, the application is appropriate for assessment in Geometry.
		G-SRT.D.10+	Prove the Laws of Sines and Cosines and use them to solve problems.	Moved standard to Geometry.	Same as the rationale above.
		G-SRT.D.11+	Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).	11a +. Prove the Law of Sines and the Law of Cosines and apply in all cases including the ambiguous case and resultant forces.	Although the application of this standard is addressed in Geometry, the special case is reserved for the plus standards. Forces naturally align with vector representation.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Geometry Circles (G-C)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \overline{\#} \\ & \stackrel{\rightharpoonup}{3} \\ & \frac{3}{0} \end{aligned}$		G-C.A.4+	Construct a tangent line from a point outside a given circle to the circle.	Moved to Geometry.	This construction ties together standards with other construction standards lending coherence. It should be in geometry, not considered an additional or " + " standard.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Geometry Expressing Geometric Properties with Equations (G-GPE)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		G-GPE.A. 2	ADDITION Derive the equation of a parabola given a focus and directrix. Derive the equations of ellipses and hyperbolas	$2+$. Explore the relationship among the parabola, focus, and directrix and use the equation to model a real life situation.	Moved from A2 and included real life applications. This naturally fits with conic sections.
$\begin{aligned} & \overline{\#} \\ & \stackrel{\rightharpoonup}{亏} \end{aligned}$		G-GPE.A.3+	given the foci, using the fact that the sum or difference of distances from the foci is constant.	the foci and use the equations to model real life situations.	Needed real world context.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Geometry Geometric Measurement and Dimension (G-GMD)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \dot{\#} \\ & \stackrel{\rightharpoonup}{\mathbf{N}} \end{aligned}$		G-GMD.2+	Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.	REMOVE STANDARD	Concept belongs in integral calculus.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Statistics and Probability \star Conditional Probability and the Rules of Probability (S-CP)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		S-CP.B.8+	Apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})=$ $P(B) P(A \mid B)$, and interpret the answer in terms of the model.	REMOVE STANDARD	Merged with S.CP.A. 3 including the symbolic form. (Algebra II). This standard is redundant.
$\stackrel{3}{6}$		S-CP.B.9+	Use permutations and combinations to compute probabilities of compound events and solve problems.	Solve problems using permutations and combinations to compute probabilities of compound events.	Used clear and concise language.

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards					
Statistics and Probability Using Probability to Make Decisions (S-MD)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\#} \\ & \vdots \\ & \frac{\Xi}{U} \end{aligned}$		S-MD.A.1+	Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.	Graph a probability distribution for a discrete random variable based on either empirical or theoretical probabilities.	Used clear and concise language.
		S-MD.A.2+	Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.	Calculate and interpret the expected value of a random variable.	Used clear and concise language.
		S-MD.A.3+	Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.	REMOVE STANDARD.	This standard is addressed in S.MD.A. 1 (+) and S.MD.A2 (+).
		S-MD.A.4+	Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?	REMOVE STANDARD.	This standard is addressed in S.MD.A. 1 (+) and S.MD.A2 (+).

Submit comments on the draft NYS Plus Mathematics Learning Standards

NYS Plus Mathematics Learning Standards
 Statistics and Probability
 Using Probability to Make Decisions (S-MD)

| | | Standard
 Code | Current Standard | Revised Standard Recommendation for 2018-19 |
| :--- | :--- | :--- | :--- | :--- | :--- | Additional Information/Notes

