Submit comments on the draft NYS Grade 6 Mathematics Learning Standards

NYS Grade 6 to Grade 8 Mathematics Learning Standards

Grade 6

Ratios and Proportional Relationships

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		$6 . R P . A .1$	1. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	1. No Change	
		6.RP.A. 2	2. Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$ (b not equal to zero), and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." (Footnote: Expectations for unit rates in this grade are limited to non-complex fractions.)	2. Understand the concept of a unit rate a / b associated with a ratio a : b with $b \neq 0$ (b not equal to zero), and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of $\$ 5$ per hamburger." (Note: Expectations for unit rates in this grade are limited to non-complex fractions.)	Clarification

Submit comments on the draft NYS Grade 6 Mathematics Learning Standards
NYS Grade 6 to Grade 8 Mathematics Learning Standards
Grade 6
Ratios and Proportional Relationships

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \text { n} \\ & \stackrel{4}{4} \\ & \frac{3}{0} \end{aligned}$		6.RP.A. 3	3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	3. Use ratio and rate reasoning to solve real-world and mathematical problems, which includes, by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	Clarification
		6.RP.A.3a	3a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	3a. No Change	
		6.RP.A.3b	3b. Solve unit rate problems including those involving unit pricing and constant speed. For example, If it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?	3b. No Change	
		6.RP.A.3c	3c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole given a part and the percent.	3c. Know that a percent of a quantity is a rate per 100. For example, 30% of a quantity means $30 / 100$ times the quantity. Solve problems involving finding the whole given a part and the percent, finding the percent given the part and the whole, and finding a part of a whole given the percent.	Clarification
		6.RP.A.3d	3d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	3d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities. (Note: Conversion of units can occur within a given measurement system and across different measurement systems.)	

Submit comments on the draft NYS Grade 6 Mathematics Learning Standards
NYS Grade 6 to Grade 8 Mathematics Learning Standards

Grade 6

The Number System

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \frac{n}{4} \\ & \stackrel{4}{3} \\ & \frac{3}{0} \end{aligned}$		6.NS.A. 1	1. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?	1. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, which includes using visual fraction models, the standard algorithm, and equations to represent the problem. For example, create a context for (2/3) \div (3/4) and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi? (In general, $(a / b) \div(c / d)=a d / b c$.)	Clarification

Submit comments on the draft NYS Grade 6 Mathematics Learning Standards

Submit comments on the draft NYS Grade 6 Mathematics Learning Standards
NYS Grade 6 to Grade 8 Mathematics Learning Standards
Grade 6
The Number System

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		6.NS.C. 5	5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, debits/credits, positive/negative electric charge); use positive and negative numbers to represent quantities in realworld contexts, explaining the meaning of 0 in each situation.	5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. For example, temperature above/below zero, elevation above/below sea level, debits/credits, positive/negative electric charge.	Clarification
		6.NS.C. 6	6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	6. No Change	
		6.NS.C.6a	6a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.	6a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself. For example, $-(-3)=3$, and that O is its own opposite.	Clarification
		6.NS.C.6b	6b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.	6b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. (Note: This standard is not intended to be the beginning of transformational geometry.)	Clarification
		6.NS.C.6c	$6 c$. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	6c. No Change	

Submit comments on the draft NYS Grade 6 Mathematics Learning Standards
NYS Grade 6 to Grade 8 Mathematics Learning Standards
Grade 6
The Number System

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \frac{n}{\#} \\ & \frac{\pi}{U} \\ & \frac{\Xi}{U} \end{aligned}$		6.NS.C. 7	7. Understand ordering and absolute value of rational numbers.	7. No Change	
		6.NS.C.7a	7a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret -3 >-7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right.	7a. No Change	
		6.NS.C.7b	7b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.	7b. No Change	
		6.NS.C.7c	7c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $\|-30\|=30$ to describe the size of the debt in dollars.	7c. No Change	
		6.NS.C.7d	7d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.	7d. Distinguish comparisons of absolute value from statements about order. For example, someone with a balance of $\$ 100$ in their bank account has more money than someone with a balance of $-\$ 1000$, because $100>-1000$. But the second person's debt is much larger than the first person's credit because $\|-1000\|>\|100\|$.	Clarification

Submit comments on the draft NYS Grade 6 Mathematics Learning Standards
NYS Grade 6 to Grade 8 Mathematics Learning Standards
Grade 6
The Number System

Submit comments on the draft NYS Grade 6 Mathematics Learning Standards
NYS Grade 6 to Grade 8 Mathematics Learning Standards
Grade 6
Expressions and Equations (Inequalities)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \stackrel{n}{\#} \\ & \stackrel{N}{n} \\ & \frac{3}{U} \end{aligned}$		6.EE.A. 1	1. Write and evaluate numerical expressions involving whole-number exponents.	1. No Change	
		6.EE.A. 2	2. Write, read, and evaluate expressions in which letters stand for numbers.	2. No Change	
		6.EE.A.2a	2a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-y$.	2a. No Change	
		6.EE.A.2b	2b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, and coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.	2b. No Change	
		6.EE.A.2c	2c. Evaluate expressions at specific values for their variables. Include expressions that arise from formulas in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{\wedge} 3$ and $A=6 s^{\wedge} 2$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	2c. No Change	

NYS Grade 6 to Grade 8 Mathematics Learning Standards

Grade 6

Expressions and Equations (Inequalities)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \frac{n}{0} \\ & \stackrel{H}{3} \\ & \vdots \end{aligned}$		6.EE.A. 3	3. Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression 6 ($4 x+3 y$); apply properties of operations to $y+$ $y+y$ to produce the equivalent expression $3 y$.	3. No Change	
		6.EE.A. 4	4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+$ y and $3 y$ are equivalent because they name the same number regardless of which number y stands for.	4. No Change	
		6.EE.B. 5	5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	5. No Change	
		6.EE.B. 6	6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	6. No Change	

Expressions and Equations (Inequalities)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \text { N } \\ & \stackrel{4}{4} \\ & \frac{n}{U} \end{aligned}$	B. Reason about and solve one-variableequations and inequalities.	6.EE.B. 7	7. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $\mathrm{px}=\mathrm{q}$ for cases in which p, q and x are all nonnegative rational numbers.	7. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers and where x represents the unknown quantity. (Note: This standard includes subtraction and division, the inverse operations of addition and multiplication.)	Clarification
		6.EE.B. 8	8. Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or $\mathrm{x}<\mathrm{c}$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	8. Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $\mathrm{x}>\mathrm{c}$ or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams. (Note: Inequalities using less than or equal to and greater than or equal to are included in this standard.)	Clarification
		6.EE.C. 9	9. Use variables to represent two quantities in a realworld problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65$ t to represent the relationship between distance and time.	9. Use variables to represent two quantities in a realworld problem that change in relationship to one another; given an equation to express one quantity, identify the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and given the equation $d=65 t$ to represent the relationship between distance and time.	In this standard, "write an equation" is replaced with "given an equation" to limit the scope of the standard and allow focus on the importance of identifying dependent and independent variables given a particular real-world situation.

NYS Grade 6 to Grade 8 Mathematics Learning Standards					
Grade 6 Statistics and Probability					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		6.SP.A. 1	1. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	1. No Change	
		6.SP.A. 2	2. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	2. No Change	
		6.SP.A. 3	3. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number while a measure of variation describes how its values vary with a single number.	3. No Change	

NYS Grade 6 to Grade 8 Mathematics Learning Standards
Grade 6
Statistics and Probability

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		6.SP.B. 4	4. Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	4. No Change	
		6.SP.B. 5	5. Summarize numerical data sets in relation to their context, such as by:	5. No Change	
	$\stackrel{\text { 을 }}{\square}$	6.SP.B.5a	5a. Reporting the number of observations.	5a. No Change	
		6.SP.B.5b	5b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.	5b. No Change	
		6.SP.B.5c	5c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data was gathered.	5c. No Change	
		6.SP.B.5d	5d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data was gathered.	5d. Understanding that the choice of measures of center and variability relates to the shape of the data distribution and the context in which the data was gathered.	

