Submit comments on the draft NYS Grade 5 Mathematics Learning Standards
NYS Grade 3 to Grade 5 Mathematics Learning Standards
Grade 5
Operations \& Algebraic Thinking

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		5.OA.A. 1	1. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	1. Apply order of operations to evaluate numerical expressions involving only parentheses and/or the four operations.	
		5.OA.A. 2	2. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by $2^{\prime \prime}$ as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.	2. No change.	
		5.OA.B. 3	3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number 0 , and given the rule "Add 6" and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	3. No change.	

NYS Grade 3 to Grade 5 Mathematics Learning Standards					
Grade 5 Number \& Operations in Base Ten					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		5.NBT.A. 1	1. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	1. No change.	
		5.NBT.A. 2	2. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole number exponents to denote powers of 10 .	2. Use whole-number exponents to denote powers of 10. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 .	No words have changed. The sentences were re-ordered because in order to "multiply a number by a power of 10 " you have to "use wholenumber exponents to denote powers of 10 ".

Submit comments on the draft NYS Grade 5 Mathematics Learning Standards
NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 5

Number \& Operations in Base Ten

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \frac{\pi}{4} \\ & \frac{\hbar}{3} \\ & \frac{3}{U} \end{aligned}$		5.NBT.A. 3	3. Read, write, and compare decimals to thousandths.	3. No change.	
		5.NBT.A.3a	3a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+$ $\begin{aligned} & 4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times \\ & (1 / 1000) \end{aligned}$	3a. Read and write decimals to thousandths using baseten numerals, number names, and expanded form, (e.g., $347.392=3 \times 100+4 \times 10+7 \times 1+3 \times(1 / 10)+$ $9 \times(1 / 100)+2 \times(1 / 1000)$, or equivalent form using decimals for the unit fraction).	
		5.NBT.A.3b	3b. Compare two decimals to thousandths based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons.	3b. No change.	
		5.NBT.A. 4	4. Use place value understanding to round decimals to any place.	4. No change.	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 5

Number \& Operations in Base Ten

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \frac{n}{2} \\ & \stackrel{H}{3} \\ & \frac{\pi}{U} \end{aligned}$		5.NBT.B. 5	5. Fluently multiply multi-digit whole numbers using the standard algorithm.	5. No change.	
		5.NBT.B. 6	6. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	6. No change.	
		5.NBT.B. 7	7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between operations. Relate the strategy to a written method and explain the reasoning used. Note: Division problems are limited to those that allow the use of concrete models, strategies based on properties of operations, and/or the relationship between operations. Problems should not be so complex as to require the use of an algorithm.	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 5

Number \& Operations - Fractions

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		5.NF.A. 1	1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12$ $+15 / 12=23 / 12$. (In general, $a / b+c / d=(a d+b c) / b d$.)	1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, - $1 / 3+2 / 9=3 / 9+2 / 9=5 / 9$ - $2 / 3+5 / 4=8 / 12+15 / 12=23 / 12$	
		5.NF.A. 2	2. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$ by observing that $3 / 7<1 / 2$.	2. No change.	
		5.NF.B. 3	3. Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	3. Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, (e.g., by using visual fraction models or equations to represent the problem). For example, - Interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. - If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 5 Number \& Operations - Fractions								
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19				Additional Information/Notes
	B. Apply and extend previous understandings of multiplication and division to multiplyand divide fractions.	5.NF.B. 4	4. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.	4. No change.				
		5.NF.B.4a	4a. Interpret the product (a / b) $\times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)=$ $\mathrm{ac} / \mathrm{bd}$.)	4a. Interpret the product (a / b) $\times \mathrm{q}$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$.				
		5.NF.B.4b	4b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.	4b. Find the area of a rectangle with fractional side lengths by tiling it with rectangles of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. For example, the figure below shows $(2 / 3) \times(3 / 4)$ by tiling it with rectangles of the appropriate unit fraction side lengths. The rectangle with the appropriate unit fraction side lengths. The area of a $(2 / 3) \times(3 / 4)$ rectangle is $6 / 12$ because the whole is partitioned into 12 parts with 6 of them shaded.				

Submit comments on the draft NYS Grade 5 Mathematics Learning Standards
NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 5

Number \& Operations - Fractions

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \text { n } \\ & \stackrel{4}{4} \\ & \frac{n}{U} \end{aligned}$		5.NF.B. 5	5. Interpret multiplication as scaling (resizing) by	5. No change.	
		5.NF.B.5a	5a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.	5a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. For example, The product of $220 \times 1 / 8$ is half the product of $220 \times 1 / 4$ because $1 / 8$ is half of $1 / 4$.	
		5.NF.B.5b	5b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .	5b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(a \times n) /(b \times n)$ to the effect of multiplying a / b by 1 . For example: - $3 / 2 \times 4>4$ - $1 / 2 \times 4<4$ - $2 / 2 \times 4=4$	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 5

Number \& Operations - Fractions

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		5.NF.B. 6	6. Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.	6. No change.	
		5.NF.B. 7	7. Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade.)	7. Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement until grade 6, 6.NS.A.1.)	The footnote should be amended to end: "... is not a requirement until grade 6 (6.NS.A.1)."
		5.NF.B.7a	7a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$ and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$.	7a. No change.	
		5.NF.B.7b	7b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$ and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=20$ because $20 \times(1 / 5)=4$.	7b. No change.	
		5.NF.B.7c	7c. Solve real-world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins?	7c. No change.	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 5

Measurement \& Data

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \frac{n}{2} \\ & \stackrel{H}{3} \\ & \frac{3}{U} \end{aligned}$	C. Geometric measurement: understand concepts of volume andrelate volume to multiplication and to addition.	5.MD.C. 4	4. Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft , and improvised units.	4. Measure volumes by counting unit cubes, using cubic cm, cubic in., cubic ft., and improvised units.	(The only change is the addition of periods after all abbreviations of customary units. This is the more common convention.)
		5.MD.C. 5	5. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.	5. No change.	
		5.MD.C.5a	5a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent three-fold whole-number products as volumes, e.g., to represent the associative property of multiplication.	5a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base.	The part after the "e.g." was moved from the standard since calculating volume is a realworld application of the Associative Property of Multiplication, which is embedded/part of standard 5.MD.C.5.
		5.MD.C.5b	5b. Apply the formulas $\mathrm{V}=(\mathrm{l})(\mathrm{w})(\mathrm{h})$ and $\mathrm{V}=(\mathrm{B})(\mathrm{h})$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.	5b. No change.	

Submit comments on the draft NYS Grade 5 Mathematics Learning Standards

| | 5.MD.C.5c | 5c.Recognize volume as additive. Find volumes of
 solid figures composed of two non-overlapping
 right rectangular prisms by adding the volumes
 of the non-overlapping parts, applying this
 technique to solve real world problems. |
| :--- | :--- | :--- | :--- | :--- |

5c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems. For example,

NYS Grade 3 to Grade 5 Mathematics Learning Standards

NYS Grade 3 to Grade 5 Mathematics Learning Standards					
Grade 5 Geometry					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
	$\begin{aligned} & \dot{\oplus} \\ & \stackrel{\text { ¢ }}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{2} \end{aligned}$	5.G.A. 3	3. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	3. No change.	
n U U		5.G.A. 4	4. Classify two-dimensional figures in a hierarchy based on properties.	4. No change.	

