Submit comments on the draft NYS Grade 3 Mathematics Learning Standards
NYS Grade 3 to Grade 5 Mathematics Learning Standards
Grade 3
Operations \& Algebraic Thinking

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 3

Operations \& Algebraic Thinking

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		3.OA.B. 5	5. Apply properties of operations as strategies to multiply and divide. Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$ then $15 \times 2=30$, or by 5 $\times 2=10$ then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=$ 16 , one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times$ 2) $=40+16=56$. (Distributive property.) (Students need not use formal terms for these properties.)	5. Apply properties of operations as strategies to multiply and divide. Examples: - If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) - $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then 15×2 $=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) - Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=40+$ $16=56$. (Distributive property.) Note: Students need not use formal terms for these properties. A variety of representations can be used when applying the properties of operations, which may or may not include parentheses.	
		3.OA.B. 6	6. Understand division as an unknown-factor problem. For example, divide $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .	6. No change.	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 3

Operations \& Algebraic Thinking

NYS Grade 3 to Grade 5 Mathematics Learning Standards					
Grade 3 Number \& Operations in Base Ten					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		3.NBT.A. 1	1. Use place value understanding to round whole numbers to the nearest 10 or 100 .	1. No change.	
		3.NBT.A. 2	2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. (A range of algorithms may be used.)	2. No change.	
		3.NBT.A. 3	3. Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations.	3. No change.	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 3

Number \& Operations - Fractions (limited to denominators 2, 3, 4, 6, 8)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \frac{n}{4} \\ & \stackrel{4}{4} \\ & \frac{3}{U} \end{aligned}$		3.NF.A. 1	1. Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / \mathrm{b}$. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8 .)	1. No change.	
		3.NF.A. 2	2. Understand a fraction as a number on the number line; represent fractions on a number line diagram.	2. No change.	
		3.NF.A.2a	2a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / \mathrm{b}$ on the number line. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4$, 6 , and 8.)	2a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part starting at 0 locates the number $1 / b$ on the number line. For example,	
		3.NF.A.2b	2b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line. (Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.)	2b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line. For example,	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 3

Number \& Operations - Fractions (limited to denominators 2, 3, 4, 6, 8)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\frac{3}{y}$		3.NF.A. 3	3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.	3. No change.	
		3.NF.A.3a	3a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4$, 6 , and 8.)	3a. No change.	
		3.NF.A.3b	3b. Recognize and generate simple equivalent fractions (e.g., $1 / 2=2 / 4,4 / 6=2 / 3$), Explain why the fractions are equivalent, e.g., by using a visual fraction model. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8 .)	3b. Recognize and generate equivalent fractions (e.g., $1 / 2$ $=2 / 4,4 / 6=2 / 3)$. Explain why the fractions are equivalent, e.g., by using a visual fraction model.	
		3.NF.A.3c	3c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate $4 / 4$ and 1 at the same point of a number line diagram. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8 .)	3c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 3=2$; locate $4 / 4$ and 1 at the same point of a number line diagram.	
		3.NF.A.3d	3d. Compare two fractions with the same numerator or the same denominator, by reasoning about their size. Recognize that valid comparisons rely on the two fractions referring to the same whole. Record the results of comparisons with the symbols $>,=$, or <, and justify the conclusions, e.g., by using a visual fraction model. (Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8.)	3d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons rely on the two fractions referring to the same whole. Record the results of comparisons with the symbols >or <, and justify the conclusions, e.g., by using a visual fraction model.	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 3

Measurement \& Data

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		3.MD.A. 1	1. Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	1. Tell and write time to the nearest minute and measure time intervals in minutes. Solve onestep word problems involving addition and subtraction of time intervals in minutes (e.g., by representing the problem on a number line diagram). Note: This includes one-step problems that cross into a new hour as well as those that cross the a.m./p.m.	
		3.MD.A. 2	2. Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). (Excludes compound units such as $\mathrm{cm}^{\wedge} 3$ and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much.")	2. No change.	
		3.MD.B. 3	3. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	3. No change.	
		3.MD.B. 4	4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters.	4. No change.	

Submit comments on the draft NYS Grade 3 Mathematics Learning Standards
NYS Grade 3 to Grade 5 Mathematics Learning Standards
Grade 3
Measurement \& Data

Submit comments on the draft NYS Grade 3 Mathematics Learning Standards
NYS Grade 3 to Grade 5 Mathematics Learning Standards
Grade 3
Measurement \& Data

Submit comments on the draft NYS Grade 3 Mathematics Learning Standards
NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 3

Measurement \& Data

Measurement \& Data					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \stackrel{n}{4} \\ & \stackrel{4}{4} \\ & \frac{3}{U} \end{aligned}$		3.MD.C. 8	8. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different area or with the same area and different perimeter.	8. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length. Represent rectangles with the same perimeter and different areas or with the same area and different perimeters.	

NYS Grade 3 to Grade 5 Mathematics Learning Standards

Grade 3 Geometry						
		Standard Code	Current Standard		Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \text { n } \\ & \stackrel{4}{む} \\ & \frac{n}{0} \end{aligned}$		3.G.A. 1	1. Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.		Classify polygons based on the number of sides and vertices. Recognize triangles, quadrilaterals, pentagons, and hexagons as examples of polygons, and draw examples of polygons that do not belong to any of these subcategories.	The original standard was not possible in grade 3 because it required students to understand both angles and parallelism, which were not (and still are not) introduced until grade 4. Students were also not coming into grade 3 understanding what a polygon is because that was not explicitly taught anywhere in the standards. This new standard is similar to what was previously done in grade 2. Grade $\mathbf{2}$ will now introduce polygons (2.G.A.1). These two changes collectively lead to a vertical coherence of the progression of 2-D geometry from grades 2-5.
		3.G.A. 2	2. Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.		No change.	

