Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards

Number and Quantity
The Real Number System (N-RN)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{y} \\ & \text { H. } \\ & \frac{3}{0} \end{aligned}$		N-RN.A. 1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=$ $5^{(1 / 3) 3}$ to hold, so $5^{(1 / 3) 3}$ must equal 5 .	Explore how the meaning of rational exponents follows from extending the properties of integer exponents.	
		N-RN.A. 2	Rewrite expressions involving radicals and rational exponents using the properties of exponents. NYSED: Includes expressions with variable factors, such as $\sqrt[3]{27 x^{5} y^{3}}$	Convert between radical expressions and expressions with rational exponents using the properties of exponents. Include expressions with variable factors, such as $\sqrt[3]{27 x^{5} y^{3}}$, being equivalent to $\left(27 x^{5} y^{3}\right)^{1 / 3}$ which equals $3 x^{5 / 3} y$.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Number and Quantity Quantities (N-Q) 太					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
-		N-Q.A. 2	2. Define appropriate quantities for the purpose of descriptive modeling. (Shared with AI). PARCC: This standard will be assessed in Algebra II by ensuring that some modeling tasks (involving Algebra II content or securely held content from previous grades and courses) require the student to create a quantity of interest in the situation being described (i.e., this is not provided in the task). For example, in a situation involving periodic phenomena, the student might autonomously decide that amplitude is a key variable in a situation, and then choose to work with peak amplitude.	REMOVE STANDARD	The committee feels that this standard is addressed in the mathematical practices MP 2 and MP 4.

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards

Number and Quantity
The Complex Number System ($\mathrm{N}-\mathrm{CN}$)

| | | Standard
 Code | Current Standard | Revised Standard Recommendation for 2018-19 |
| :--- | :--- | :---: | :---: | :---: | :---: | Additional Information/Notes

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Number and Quantity The Complex Number System (N-CN)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{y} \\ & \frac{\pi}{3} \\ & \frac{ \pm}{U} \end{aligned}$		N-CN.C. 7	7. Solve quadratic equations with real coefficients that have complex solutions.	NO CHANGE	

NYS Algebra II Mathematics Learning Standards

Algebra

Seeing Structure in Expressions (A-SSE)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\#} \\ & \stackrel{H}{y} \end{aligned}$		A-SSE.A. 2	2. Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$. (Shared with AI). NYSED: Includes factoring by grouping. PARCC: i.) Tasks are limited to polynomial, rational, or exponential expressions. ii.) Examples: see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$. In recognizing the equation $x^{2}+2 x+1+y^{2}=9$, see and opportunity to rewrite the first three terms as $(x+1)^{2}$, thus recognizing the equation of a circle with radius 3 and center $(-1,0)$. See $\left(x^{2}+4\right) /\left(x^{2}+3\right)$ as $\left(\left(x^{2}+3\right)+1\right) /\left(x^{2}+3\right)$, thus recognizing an opportunity to write it as $1+1 /\left(x^{2}+3\right)$.	2b. Fluently use the structure of an expression to identify ways to rewrite it, including factoring by grouping and factoring the sum and difference of cubes. Tasks are limited to polynomial, rational or exponential expressions. Examples include, but are not limited to: a) $81 x^{4}-16 y^{4}$ is equivalent to $\left(9 x^{2}\right)^{2}-\left(4 y^{2}\right)^{2}$ or $\left(9 x^{2}-4 y^{2}\right)\left(9 x^{2}+4 y^{2}\right)$ or $(3 x+2 y)(3 x-2 y)\left(9 x^{2}+4 y^{2}\right)$ b) $x^{2}+4 x+4+y^{2}=25$ is equivalent to $(x+2)^{2}+y^{2}=5^{2}$ c) $\left(x^{2}+4\right) /\left(x^{2}+3\right)$ is equivalent to $\frac{\left(x^{2}+3\right)+1}{x^{2}+3}=\frac{x^{2}+3}{x^{2}+3}+\left(\frac{1}{x^{2}+3}\right)$ or $1+\left(1 /\left(x^{2}+3\right)\right)$	Clarification emphasizing structure and types of factoring to be included. Standard is a fluency expectation for Algebra II.

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards

Algebra
Seeing Structure in Expressions (A-SSE)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \frac{1}{ \pm} \\ & \frac{5}{3} \\ & \frac{3}{4} \end{aligned}$				B. Write expressions in equivalent forms to reveal their characteristics.	Change cluster heading, expressions cannot be solved.
		A-SSE.B. 3	3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (Shared with A1)	NO CHANGE	
		A-SSE.B.3a	3a. Factor quadratic expressions including leading coefficients other than 1 to reveal the zeros of the function it defines.	3a. Factor quadratic expressions including leading coefficients other than 1 to reveal the zeros of the function it defines.	New Addition See revised A-SSE.B.3a limit for Algebra I.
		A-SSE.B.3c	3c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 \mathrm{t}}=$ $1.01212^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. PARCC: i) Tasks have a real-world context. As described in the standard, there is interplay between the mathematical structure of the expression and the structure of the situation such that choosing and producing an equivalent form of the expression reveals something about the situation. ii) Tasks are limited to exponential expressions with rational or real exponents.	c. Use the properties of exponents to rewrite exponential expressions. Exponents will be rational. For example the expression 1.15^{t} can be rewritten as $\left(1.15^{1 / 12}\right)^{12 \mathrm{t}}=1.012^{12 \mathrm{t}}$ to reveal the approximate equivalent monthly interest rate when the annual rate is 15%.	Rational exponents are an expectation of Algebra II. Cleaned up the wording for more clarity.

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

| | A-SSE.B.4 | 4. Derive the formula for the sum of a finite
 geometric series (when the common ratio is not
 1), and use the formula to solve problems. For
 example, calculate mortgage payments. NYSED:
 Includes using summation notation. | MOVE STANDARD TO FUNCTIONS CLUSTER F-BF.B.7
 Cluster and move to
 Building Functions cluster
 (new label: F-BF.B.7) |
| :--- | :--- | :--- | :--- | :--- | :--- |

NYS Algebra II Mathematics Learning Standards

Algebra

Arithmetic with Polynomials and Rational Expressions (A-APR)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\#} \\ & \frac{\hbar}{3} \\ & \hline \end{aligned}$	fo sıołjef pue sorəz uə	A-APR.B. 2	2. Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	2. Demonstrate knowledge of and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	
		A-APR.B. 3	3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. (Shared with A1). PARCC: i) Tasks include quadratic, cubic, and quartic polynomials and polynomials for which factors are not provided. For example, find the zeros of $\left(x^{2}-1\right)\left(x^{2}+1\right)$.	3.Identify zeros of polynomials. 3b. i) Identify zeros of quadratic, cubic, and quartic polynomials when suitable factorizations are available; ii) use the zeros to construct a rough graph of the function defined by the polynomial; and iii) create an appropriate equation given the zeros and/or a graph.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Algebra Arithmetic with Polynomials and Rational Expressions (A-APR)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{y} \\ & \vdots \\ & \frac{\pi}{0} \end{aligned}$		A-APR.C. 4	4. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+$ $(2 x y)^{2}$ can be used to generate Pythagorean triples.	4. Prove polynomial identities. For example, prove the identity $\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ or prove that the difference between squares of consecutive integers is odd.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Algebra Arithmetic with Polynomials and Rational Expressions (A-APR)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{y} \\ & \vdots \\ & \frac{\pi}{0} \end{aligned}$		A-APR.D. 6	6. Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	6. Fluently, rewrite rational expressions in different forms: Write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$.	Standard is a fluency expectation for Algebra II.

NYS Algebra II Mathematics Learning Standards

Algebra Creating Equations (A-CED)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\#} \\ & \frac{\boxed{3}}{\square} \end{aligned}$		A-CED.A. 1	1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. (Tasks are limited to linear, quadratic, or exponential equations with integer exponents.) (Shared with A1). PARCC: i) Tasks are limited to exponential equations with rational or real exponents and rational functions. ii) Tasks have a real-world context.	1b. Create equations and inequalities in one variable to represent a real world context. Include linear, quadratic, rational, and exponential functions.	See A-CED.A.1a revised standard for Algebra I.

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards

Algebra
Reasoning with Equations and Inequalities (A-REI)

| | | Standard
 Code | Current Standard | Revised Standard Recommendation for 2018-19 |
| :--- | :--- | :--- | :--- | :--- | :--- | Additional Information/Notes

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards

Algebra

Reasoning with Equations and Inequalities (A-REI)

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards

Algebra
Reasoning with Equations and Inequalities (A-REI)

| | | Standard
 Code | Current Standard | Revised Standard Recommendation for 2018-19 |
| :--- | :--- | :--- | :--- | :--- | :--- |

NYS Algebra II Mathematics Learning Standards					
Functions Interpreting Functions (F-IF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \pm \\ & \pm \\ & \frac{\pi}{3} \end{aligned}$		F-IF.A. 3	3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)$ $=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n \geq 1$. (Shared with A1). PARCC: i) This standard is supporting work in Algebra II. This standard should support the major work in F-BF. 2 for coherence.	3b. Fluently recognize that sequences are functions, sometimes defined recursively in subscript notation, whose domain is a subset of the integers.	See F-IF.A.3a revised standard for Algebra I. Functional notation for sequences and recursive forms should be introduced in Algebra II. Standard is a fluency expectation for Algebra II.

NYS Algebra II Mathematics Learning Standards

Functions

Interpreting Functions (F-IF)

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \overline{\#} \\ & \stackrel{5}{3} \\ & \frac{3}{0} \end{aligned}$		F-IF.B. 4	4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. (Shared with A1). PARCC: i) Tasks have a realworld context. ii) Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions.	4 b. For a function that models a relationship between two quantities: i) interpret key features of graphs and tables in terms of the quantities; and ii) sketch graphs showing key features given a verbal description of the relationship. Algebra II Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maxima and minima; symmetries; end behavior; and periodicity. Tasks may involve realworld context and may include polynomial, exponential, logarithmic, and trigonometric functions.	
		F-IF.B. 6	6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. (Shared with A1). PARCC: i) Tasks have a real-world context. ii)Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions.	6b. Calculate and interpret the average rate of change of a function over a specified interval. Algebra II tasks have a real-world context and may involve polynomial, exponential, logarithmic, and trigonometric functions.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Functions Interpreting Functions (F-IF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\#} \\ & \frac{W}{U} \\ & \frac{3}{2} \end{aligned}$		F-IF.C. 7	7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	7. Graph functions expressed as an equation and show key features of the graph, by hand in simple cases and using technology in more complicated cases.	
		F-IF.C.7c	7c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.	NO CHANGE	
		F-IF.C.7e	7e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	NO CHANGE	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Functions Interpreting Functions (F-IF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \pm \\ & \frac{\pi}{3} \\ & \frac{3}{U} \end{aligned}$		F-IF.C. 8	8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	8. Write a function in different but equivalent forms to reveal and explain different properties of the function.	
		F-IF.C.8b	8b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02)^{t}, y=(0.97)^{t}, y=$ $(1.01)^{12 t}, y=(1.2)^{t / 10}$, and classify them as representing exponential growth or decay. NYSED: Includes $A=\mathrm{Pe}^{\text {rt }}$ and $A=P(1+(r / n))^{\text {nt }}$	8b. Use the properties of exponents to interpret exponential functions, and classify them as representing exponential growth or decay. Include real world problems involving compound and continuous interest.	
		F-IF.C. 9	9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. (Shared with A1). PARCC: Tasks may involve polynomial, exponential, logarithmic and trigonometric functions.	9b. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Algebra II tasks may involve polynomial, exponential, logarithmic and trigonometric functions.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Functions Building Functions (F-BF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \bar{む} \\ & \pm \\ & \frac{3}{U} \end{aligned}$		F-BF.A. 1	1. Write a function that describes a relationship between two quantities.	NO CHANGE	
		F-BF.A.1a	1a. Determine an explicit expression, a recursive process, or steps for calculation from a context. (Shared with AI). PARCC: i) Tasks have a realworld context ii) Tasks may involve linear functions, quadratic functions, and exponential functions.	1a. Determine a function from context. Algebra II: Determine an explicit expression, a recursive process, or steps for calculation from a context. Tasks may involve linear functions, quadratic functions, and exponential functions.	
		F-BF-A.1b	1b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.	NO CHANGE	
		F-BF-A. 2	2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	NO CHANGE	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards

Functions
Building Functions (F-BF)

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Functions Linear, Quadratic and Exponential Models (F-LE) \star					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		F-LE.A. 2	2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). (Shared with A1). PARCC: Tasks will include solving multi-step problems by constructing linear and exponential functions.	2b. Construct a linear, exponential, arithmetic or geometric function rule given: i) a graph; ii) a description of the relationship; and iii) two input-output pairs (include reading these from a table).	
		F-LE.A. 4	4. For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.	4. Use common or natural logarithms to solve exponential equations, such as $a b^{c t}=d$ where a, b, c, and d are real numbers. Evaluate the logarithm using technology.	

NYS Algebra II Mathematics Learning Standards					
Functions Linear, Quadratic and Exponential Models (F-LE)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{array}{\|l\|l} \hline \\ \hline \frac{\ddot{3}}{6} \\ \hline \end{array}$		F-LE.B. 5	5. Interpret the parameters in a linear or exponential function in terms of a context. (Shared with A1). PARCC: i) Tasks have a real world context. ii) Tasks are limited to exponential functions with domains not in the integers.	5. Interpret the parameters in a linear or exponential function in terms of a context.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Functions Trigonometric Functions (F-TF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{N} \\ & \stackrel{5}{3} \\ & \frac{3}{0} \end{aligned}$		F-TF.A. 1	1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	NO CHANGE	
		F-TF.A. 2	2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. NYSED: Includes the reciprocal trigonometric functions.	2. Apply concepts of the unit circle in the coordinate plane to calculate the values of the six trigonometric functions given angles in radian measure.	
		F-TF.A.4+	NEW ADDITION $4+$. Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.	4. Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.	Move plus standard into Algebra II.

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Functions Trigonometric Functions (F-TF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\vdots} \\ & \stackrel{\rightharpoonup}{3} \\ & \end{aligned}$	 $\dot{\infty}$	F-TF.B. 5	5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.	NO CHANGE	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Functions Trigonometric Functions (F-TF)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\vdots} \\ & \overleftarrow{\#} \\ & \frac{3}{U} \end{aligned}$	C. Prove and apply trigonometric identities.	F-TF.C. 8	8. Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and use it to find $\sin (\theta)$, $\cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle.	8a. Prove the Pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$. 8b. Find the value of any of the six trigonometric functions given any other trigonometric function value.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Geometry Properties with Equations (G-GPE)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \vdots \\ & \pm \\ & \frac{1}{c} \end{aligned}$		G-GPE.A. 2	2. Derive the equation of a parabola given a focus and directrix.	REMOVE STANDARD TO PLUS STANDARDS	The committee feels that this standard is not appropriate for this course, ties better with the study of conics in higher level math courses.

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Statistics and Probability Interpreting categorical and quantitative data (S-ID)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{ \pm} \\ & \stackrel{\hbar}{3} \\ & \frac{3}{U} \end{aligned}$		S-ID.A. 4	4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	NO CHANGE	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Statistics and Probability Interpreting categorical and quantitative data (S-ID)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{\#} \\ & \stackrel{\hbar}{3} \end{aligned}$		S-ID.B. 6	6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	NO CHANGE	
		S-ID.B.6a	6a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. (Shared with A1). PARCC: i) Tasks have a realworld context. ii) Tasks are limited to exponential functions with domains not in the integers and trigonometric functions.	6a. Fit a function to real-world data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Algebra II emphasis is on exponential and sinusoidal models and includes the regression capabilities of the calculator.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Statistics and Probability Making Inferences and Justifying Conclusions (S-IC) \star					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{y} \\ & \frac{5}{3} \\ & \frac{3}{0} \end{aligned}$		S-IC.A. 1	1. Understand statistics as a process for making inferences about population parameters based on a random sample from that population.	REMOVE STANDARD. RENDUNDANT WITH TITLE OF CLUSTERS.	Not necessary with language clarification of following IC standards.
		S-IC.A. 2	2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?	2. Determine if a statistic (i.e. sample proportion, difference of sample proportions, sample mean, and difference of sample means) is likely to occur based on a given simulation. For the purposes of this course, if the statistic falls within two standard deviations of the mean (95% interval centered on the mean), then the statistic is considered likely (plausible, usual).	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Statistics and Probability \star Making Inferences and Justifying Conclusions (S-IC) \star					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \grave{む} \\ & \stackrel{\rightharpoonup}{3} \\ & \frac{3}{0} \end{aligned}$		S-IC.B. 3	3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	3. Recognize the purposes of and differences among surveys, experiments, and observational studies. Explain how randomization relates to each.	
		S-IC.B. 4	4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	4. Given a simulation model based on a sample, construct the 95% interval centered on the mean (mean +/- two standard deviations) and determine if a suggested parameter is plausible.	
		S-IC.B. 5	5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences	REMOVE STANDARD	Standard is incorporated in S-IC.A.2.
		S-IC.B. 6	6. Evaluate reports based on data.	6a. Use the language of statistics to draw conclusions from numerical summaries.	Clarification and limiting the scope of the standard.
				6b. Use the language of statistics to critique claims from informational texts. For example, cause and effect vs correlation, bias, measures of center and spread.	

NYS Algebra II Mathematics Learning Standards

Statistics and Probability \star

Conditional Probability and the Rules of Probability (S-CP) \star

		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
$\begin{aligned} & \overline{\#} \\ & \stackrel{H}{n} \\ & \frac{n}{0} \end{aligned}$		S-CP.A. 1	1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	NO CHANGE	
		S-CP.A. 2	2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	2.Within a given context, determine if two events A and B are independent by showing: i) the probability of A and B occurring together is the product of their probabilities ($P(A$ and $B)=P(A) \times P(B))$; ii) the probability of A given B is same as the probability of $A(P(A \mid B)=P(A))$; or iii) the probability of B given A is the same as the probability of $B(P(B \mid A)=P(B))$.	
		S-CP.A. 3	3. Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	3. Calculate and determine the conditional probability of A given B in the context of a model.	
		S-CP.A. 4	4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.	4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and calculate conditional probabilities.	

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

| | S-CP.A.5 | 5. Recognize and explain the concepts of
 conditional probability and independence in
 everyday language and everyday situations. For
 example compare the chance of having lung
 cancer if you are a smoker with the chance of
 being a smoker if you have lung cancer. | REMOVE STANDARD. COMBINED WITH OTHER
 STANDARDS IN CLUSTER FOR CLARITY. | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Submit comments on the draft NYS Algebra II Mathematics Learning Standards

NYS Algebra II Mathematics Learning Standards					
Statistics and Probability Conditional Probability and the Rules of Probability (S-CP)					
		Standard Code	Current Standard	Revised Standard Recommendation for 2018-19	Additional Information/Notes
		S-CP.B. 6	6. Find the conditional probability of A given B as the fraction of B^{\prime} 's outcomes that also belong to A, and interpret the answer in terms of the model.	REMOVE	Combined into other standards in cluster for clarity.
¢ \# U		S-CP.B. 7	7. Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+$ $P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.	NO CHANGE	

