## PUBLICLY AVAILABLE SERVICES SUMMARY

This form will be posted on the New York State Education Department’s Web site and distributed through other means for all applications that are approved in conjunction with this RFQ to allow districts and BOCES to understand proposed offerings in advance of directly contacting Assessment Providers regarding potential further procurements.

### Assessment Provider Information

<table>
<thead>
<tr>
<th>Name of Assessment Provider:</th>
<th>FastBridge Learning, LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment Provider Contact Information:</td>
<td><a href="http://www.fastbridge.org">www.fastbridge.org</a> 612-254-2534 <a href="mailto:sales@fastbridge.org">sales@fastbridge.org</a></td>
</tr>
<tr>
<td>Name of Assessment:</td>
<td>CBMmath</td>
</tr>
</tbody>
</table>
| Nature of Assessment: | ☐ ASSESSMENT FOR USE WITH STUDENT LEARNING OBJECTIVES WITH A TARGET SETTING MODEL; OR  
☐ SUPPLEMENTAL ASSESSMENT WITH AN ASSOCIATED GROWTH MODEL:  
☐ GAIN SCORE MODEL  
☐ GROWTH-TO-PROFICIENCY MODEL  
☐ STUDENT GROWTH PERCENTILES  
☐ PROJECTION MODELS  
☐ VALUE-ADDED MODELS  
☐ OTHER:  
| What are the grade(s) for which the assessment can be used to generate a 0-20 APPR score? | Grades 1 to 6 |
| What are the subject area(s) for which the assessment can be used to generate a 0-20 APPR score? | Mathematics |
| What are the technology requirements associated with the assessment? | FAST™ is a web-based, hosted SaaS solution. As such, with no hardware or software to install, implementing FAST is simple. FAST requires no network or computer-based installation. Our cloud-based system is easy to implement and supported with optional automated rostering and SIS integration, nothing to install or maintain, and multi-platform and device support. The infrastructure requirements of New York Schools will be minimal. |
| Is the assessment available, either for free or through purchase, to other districts or BOCES in New York State? | ☒ Yes  
☐ No |
Please provide an overview of the assessment for districts and BOCES. Please include:
- A description of the assessment;
- A description of how the assessment is administered;
- A description of how scores are reported (include links to sample reports as appropriate);
- A description of how the Assessment Provider supports implementation of the assessment, including any technical assistance. (3 pages max)

CBMmath is an evidence-based assessment for use to screen and monitor student progress in math competency in primary grades (1-6). CBMmath uses easy, time-efficient assessment procedures to determine a student’s general math ability across short intervals of time. CBMmath consists of two types of assessments (Process and Fluency) that measure different computational skills from grades 1 through 6. Fluency skills are those which are considered to be automated. They include rapid recall of mathematic facts that should take little or no cognitive effort. Process skills are those in which the student may have to solve multiple steps to reach a solution. Students are not expected to have these items memorized and would be given paper and a pencil to work out the solution. Because of the higher amount of cognitive effort, process skills are inherently more difficult than fluency skills. The goal of this assessment is to serve as a tool to screen and monitor students’ progress in math. Every skill created was based on the computational skills outlined in the Common Core State Standards.

Uses and Applications: CBMmath is an evidence-based assessment for use to screen and monitor students’ progress in math achievement. Multi-skill probes were stratified by item type so that the type of item alternated between computational skills. CBMmath is designed for all students in grades 1 through 6.

Screening and Monitoring: CBMmath as a screening assessment is intended to identify students who are at-risk for math difficulties, and to guide instructional decisions. This allows for instruction to be more or less resource intensive and more individualized for students requiring the most support. In addition, at the school level, student growth can be tracked and monitored, allowing administrators to look at improvements both across grades and academic years for the purpose of accountability. Teachers and administrators may use this information to help parents better understand their children’s mathematics needs. Screening information can be collected three or four times a year (i.e., fall, winter, and spring, or September, December, February, and May). Screening periods should be scheduled prior to the beginning of school and should be communicated to those involved in order to prevent conflicts during the year (i.e., staff in-service days, field trips, etc.). CBMmath is

Fluency scores are reported in items correct per 10 minutes. Although administrations are only 1-2 minutes in duration, the use of a 10-minute scale helps avoid decimals and provides a more sensitive scale. Process scores are based on the multiple steps required to solve a problem. Although the administration are timed to 10-15 minutes, these are not considered fluency-type assessments. Items are weighted by the total number of possible process errors within the item. Incorrect answers are analyzed in order to determine which of the potential errors led to the incorrect response. Process errors include Operations, Order of Operations, Regrouping or Carrying, Place Holder/Value, Remainder, Skips, Blanks, and Unknown. Reports are available to evaluate student performance against local norms, mastery criterion, and predictions of risk to meet proficiency standards on state tests. Benchmark/criterion standards are specified for each grade level, which are used to identify students at risk.
FAST provides information on student proficiency, as well as growth reporting over time. Our easy-to-generate, carefully structured reports are instantly available for teachers. These reports are instantly applicable to instruction, offering rich information about student strengths, areas needing improvement, and growth trends within and across school years.

Due to the purpose and structure of the CBMmath assessment, composite scores could not be obtained with data available prior to the 2015-16 school year. Current datasets only contain student scores across different components of CBMmath, and these components were not designed to be combined into composite scores (e.g., via total scores or IRT modeling). Composite scoring will be examined using data collected during the 2015-16 school year. These data will be used to obtain SPG model results prior to the 2016-17 school year, with the goal of supporting teacher evaluation with CBMmath by the spring of 2017.

The FAST online system handles the administration and scoring of assessments and reporting of results. Norming data collected during the 2015/2016 school year will be integrated into the online reporting functionality prior to the 2016/2017 school year. Student growth estimates over screening periods will be reported with standard errors, and SGP will be provided for any students enrolled for at least 70% of the school year having fall and spring assessment scores. Educators having SGP results from at least 15 students meeting these criteria will then be provided with MGP APPR scores, and HEDI ratings using updating crosswalk tables.

FastBridge Learning provides tailored options for training, professional development (PD), and ongoing learning that are designed to be efficient, effective, and engaging. We believe that in order for teachers to provide high quality instruction for their students, we must provide high quality professional development for our participants. We use multiple approaches to facilitate learning, including digital technologies, interaction, hands-on learning, small group activities, Q&A, live modeling, certification, and more to create a learner-centered environment that maximizes engagement and knowledge retention. Training and Professional Development Service Options delivered by FastBridge Learning Consultants:

- Onsite services in single or two-day packages designed specifically to provide guidance, instruction, and assistance to support action planning and implementation delivered in a train-the-trainer model.
- Webinar-style services: “Ask the Expert” consultation/training by-the-hour provides a flexible delivery model with affordable, just-in-time PD when you need it most.

The FAST Knowledge Base also offers extensive online support to users via a searchable database of written articles, screenshots, step-by-step tutorials, archived webinars, and tutorial videos about FAST. The Knowledge Base includes general FAQs, Getting Started Guides and Videos for all user roles in FAST, Archived Webinars, Login Access Guides, Overviews, FAQs, Data Interpretation Guides, and other Resources for each of the FAST measures, resources to support screening and progress monitoring set-up and administration, report guides, Benchmark and Norm information, and tools to support School Managers and District Managers. From the FAST Knowledge Base, users may also submit a request for assistance from our School Support team either via email or using the Knowledge Base’s “Live Chat” feature (available during business hours).

Please provide an overview of the student-level growth model or target setting model for SLOs for districts and BOCES, along with how student-level growth scores are aggregated to the create teacher-level scores, and how those teacher-level scores are converted to New York State’s 0-20 metric.
Due to the purpose and structure of the CBMmath assessment, composite scores could not be obtained with data available prior to the 2015-16 school year. Current datasets only contain student scores across different components of CBMmath, and these components were not designed to be combined into composite scores (e.g., via total scores or IRT modeling). Composite scoring will be examined using data collected during the 2015-16 school year. These data will be used to obtain SPG model results prior to the 2016-17 school year, with the goal of supporting teacher evaluation with CBMmath by the spring of 2017.

Norming data collected during the 2015/2016 school year will be integrated into the online reporting functionality prior to the 2016/2017 school year. Student growth estimates over screening periods will be reported with standard errors, and SGP will be provided for any students enrolled for at least 70% of the school year having fall and spring assessment scores. Educators having SGP results from at least 15 students meeting these criteria will then be provided with MGP APPR scores, and HEDI ratings using updating crosswalk tables.

For additional details, please reference *Formative Assessment System for Teachers: Growth Modeling for Educator Evaluation* submitted as part of Appendix A-1.

### New York State Next Generation Assessment Priorities

Please provide detail on how the proposed supplemental assessment or assessment to be used with SLOs addresses each of the Next Generation Assessment Priorities below.

<table>
<thead>
<tr>
<th>Characteristics of Good ELA and Math Assessments (only applicable to ELA and math assessments):</th>
<th>The goal of the CBMmath assessment is to serve as a tool to screen and monitor students’ progress in math. Every skill created as based on the computational skills outlined in the Common Core State Standards. Aspects of mathematics measured by CBMmath include Operations &amp; Algebraic Thinking, Number &amp; Operations in Base Ten Skills and the Number System. CBMmath is an evidence-based assessment of math achievement. Multi-skill probes are stratified by item type so that the type of item alternates between computational skills. Please see Technical Manual (Appendix A-2) beginning on page 148 for additional details. Table 113 on page 156 provides detail alignment of CBMmath to the Common Core State Standards.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessments Woven Tightly Into the Curriculum:</td>
<td>We believe the best assessments are those that are able to be seamlessly administered in conjunction with regular classroom instruction and in support of the day-to-day academic goals of the teacher. Designed for Multiple Systems of Support (MTSS) and Response to Intervention (RtI), FAST makes program implementation easy and efficient with automated scoring, analysis, norming and reporting; customizable screening, benchmarking, instructional recommendations and progress monitoring. Immediate, on-demand reporting within FAST provides actionable data specifically designed to guide instruction and remediation. Our assessments help teachers collect data that answer their critical questions about student skills, instructional needs, and growth at the student, group, class, grade, school, and district levels. A variety</td>
</tr>
</tbody>
</table>
of reports are provided to inform instruction. FAST assessments yield reports with scores compared to color-coded norms (class, school, district, national) and benchmarks (high risk, some risk, low risk that predict state test performance). Norms and benchmarks are available for both level of achievement and rate of growth. Rate of growth norms are provided for aggregated (all students) and disaggregated (high, typical, low achieving). These results are presented in automated reports. Reports help evaluate district, school, grade, and teacher level success.

<table>
<thead>
<tr>
<th>Performance Assessment:</th>
<th>CBMmath was recently developed with data collections being conducted during the 2015-16 school year. Analysis are pending. Psychometric evidence will be available for the 2016-17 school year.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FastBridge Learning uses standard setting processes to summarize student performance. Standards may be used to inform goal setting, identify instructional level, and evaluate the accuracy of student performance. The FastBridge Learning software provides various resources to assist administrators with test result interpretations. For example, a Visual Conventions drop down menu is available to facilitate interpretation of screening and progress monitoring group and individual reports. Percentiles are calculated for local school norms unless otherwise indicated. Local school norms compare individual student performances to their same grade and school peers. Methods of notation are also included to provide information regarding those students predicted to be at risk. Exclamation marks (! and !!) indicate the level of risk based on national norms. One exclamation mark refers to some risk, whereas two exclamation marks refer to high risk of reading difficulties or not meeting statewide assessments benchmarks, based on the score. Interpreting FastBridge assessment scores involves a basic understanding of the various scores provided in the FastBridge Learning software and helps to guide instructional and intervention development. FastBridge Learning offers individual, class, and grade level reports for screening, and individual reports for progress monitoring. Additionally, online training modules include sections on administering the assessments, interpreting results, screen casts, and videos. Results should always be interpreted carefully considering reliability and validity of the score, which is influenced by the quality of standardized administration and scoring. It important to consider the intended purpose of the assessment, its content, the stability of performance over time, scoring procedures, testing situations, or the examinee. The FastBridge Learning system automates analysis, scoring, calculations, reporting and data aggregation. It also facilitates scaling and equating across screening and progress monitoring occasions.</td>
</tr>
</tbody>
</table>
### Efficient Time-Saving Assessments:

Each CBMmath assessment is designed to be highly efficient and give a broad indication of reading competence. CBMmath Automaticity can be computer administered 1:1 or group administered in approximately 1-2 minutes for screening and progress monitoring. CBMmath Process is paper-and-pencil administered with automated scoring. It can be group or 1:1 administered in 10-15 minutes for screening and progress monitoring. The automated output of each assessment gives information on the accuracy and fluency of passage reading which can be used to determine instructional level to inform intervention.

### Technology:

FAST™ is a web-based, hosted SaaS solution. As such, with no hardware or software to install, implementing FAST™ is simple. FAST™ requires no network or computer-based installation. Our cloud-based system is easy to implement and supported with optional automated rostering and SIS integration, nothing to install or maintain, and multi-platform and device support.

### Degree to which the growth model must differentiate across New York State’s four levels of teacher effectiveness (only applicable to supplemental assessments):

Due to the purpose and structure of the CBMmath assessment, composite scores could not be obtained with data available prior to the 2015-16 school year. Current datasets only contain student scores across different components of CBMmath, and these components were not designed to be combined into composite scores (e.g., via total scores or IRT modeling). Composite scoring will be examined using data collected during the 2015-16 school year. These data will be used to obtain SGP model results prior to the 2016-17 school year, with the goal of supporting teacher evaluation with CBMmath by the spring of 2017.
Please read each of the items below and check the corresponding box to ensure the fulfillment of the technical criteria outlined in the Technical Application on “FORM B-2”.

PLEASE SUBMIT ONE “FORM G” FOR EACH APPLICANT. CO-APPLICANTS SHOULD SUBMIT SEPARATE FORMS.

COMPLETE THIS SECTION:

### 2.2(A) Narrative Overview of Proposed Supplemental Assessment and Associated Growth Model

This application contains a short overview of the assessment being proposed, including the intended purpose of the assessment, and how the assessment is administered.

For supplemental assessments, this application contains a description of the growth model and how it is used in conjunction with the assessment.

For K-2 assessments, this application contains evidence that the proposed assessment is consistent with this RFQ’s requirement that the assessment not be a “Traditional Standardized Assessment” as defined above in the section “Definitions of Key Terms Used in this RFQ.”

### 2.2(B) Evidence of Capability

This application provides an overview of services provided by the Assessment Provider, including a description of the range of support / technical assistance that the Assessment Provider would provide to an LEA if selected by an LEA for this service.

This application contains information as to whether the Applicant or Assessment Provider has been denied approval as a provider of assessment services in another state(s) and the reason(s) for such denial. If denied within New York State, the location and reason are indicated.

### 2.2(C): Evidence of Copyright Owner/Assessment Representative History of Assessment Development

This application contains evidence that the Copyright Owner/Assessment Representative has a history of developing assessments of student learning (achievement or growth) for the purpose of making defensible judgments about educator effectiveness.
2.2(D)-i: Technical Documentation Related to Assessment and Student Growth Score Properties: RELIABILITY
Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.

For supplemental assessments used in conjunction with growth models:
This application contains evidence of the minimum criteria for reliability:
- Student test scores have adequate levels of reliability (e.g., coefficient alpha > 0.75).

This application contains evidence of the desired criteria for reliability:
- Standard errors provided for students growth scores.
- Student growth classifications have adequate decision consistency.
- Teacher effectiveness classifications demonstrate adequate consistency.
  Examples include agreement statistics (e.g., kappa coefficients) based on simulation studies.

Check all that apply:

2.2(D)-ii: Technical Documentation Related to Assessment and Student Growth Score Properties: VALIDITY – ALIGNMENT
Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.

For supplemental assessments used in conjunction with growth models:
This application contains evidence of the minimum criteria for alignment validity:
- Evidence that test content is sufficiently aligned with New York State Learning Standards and covers a range of measurable standards.
  Documentation that demonstrates that:
  (a) at least 80% of the test measures content aligned with NYS learning standards,
  (b) no more than 20% of test content is aligned with other learning standards or objectives, and
  (c) a range of content from the NYS learning standards is measured

Note: Other relevant standards can be proposed if NYS Learning Standards do not apply to subject area.

This application contains evidence of the desired criteria for alignment validity:
- 100% alignment between NYS Learning Standards and assessment.

Check all that apply:

2.2(D)-iii: Technical Documentation Related to Assessment and Student Growth Score Properties: VALIDITY – RELATIONS TO OTHER VARIABLES
Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.

For supplemental assessments used in conjunction with growth models:
This application contains evidence of the minimum criteria for validity in relation to other variables:
- Evidence students’ growth scores are correlated with other measures of student progress (e.g., \( r > 0.5 \) with measures such as the number of objectives

Check all that apply:
mastered by a student over the course of the year, teachers’ ratings of students’ progress, or scores from other assessments).

This application contains evidence of the *desired* criteria for validity in relation to other variables:
- Evidence teacher effectiveness ratings are positively correlated (e.g., \( r > .5 \)) with other measures of teaching effectiveness.

### 2.2(D)-iv: Technical Documentation Related to Assessment and Student Growth Score Properties: VALIDITY – INTERNAL STRUCTURE

*Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.*

Para 1...

Para 2...

Para 3...

*Notes: If *gain score model* is used, evidence is needed that students’ pretest and posttest scores are on the same scale. If *student growth percentile* model used, justification for the number of years included in the model should be provided. If *growth-to-proficiency*, *projection*, or *value-added models* are used, evidence is needed that the model explains a significant amount of variability in student achievement. Also, models should demonstrate robustness to missing data.*

### 2.2(D)-v: Technical Documentation Related to Assessment and Student Growth Score Properties: UTILITY AND COMPREHENSIBILITY

*Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.*

Para 1...

Para 2...

Para 3...

*Para 4...

Check all that apply:

- [ ] Para 1

- [ ] Para 2

- [ ] Para 3

- [ ] Para 4

### 2.2(E)-i: Technical Documentation Related to Aggregating Student-Level Growth Scores to Teacher-Level Scores: CREATION OF TEACHER LEVEL SCORES

*For supplemental assessments used in conjunction with growth models:*

This application includes a narrative description of how student-level scores are aggregated to create a single teacher-level score for each teacher.

- [ ] 

- [ ] N/A
### 2.2(E)-ii: Technical Documentation Related to Aggregating Student-Level Growth Scores to Teacher-Level Scores: EXCLUSION RULES

This application includes a description of any exclusion rules that remove students associated with a given teacher from the teacher’s teacher-level score (either through a growth model or in conjunction with an SLO).

| | N/A |

### 2.2(F): Technical Documentation Related to Converting Teacher-Level Growth Score to New York State’s 0-20 APPR Scale

This application includes a crosswalk that maps scores on the assessment’s aggregated teacher-level growth score to the required New York State teacher and principal evaluation metric, which ranges from 0-20.

This application includes procedures for converting teacher-level growth scores to the 0-20 APPR scale comply with the New York Standards for each evaluation rating category, which are based on the following definitions.

**For supplemental assessments used in conjunction with growth models:**

This application includes an explanation of the assignment of HEDI rating categories based on the following ranges:

- **Highly Effective:** results are well-above State average* for similar students
- **Effective:** results meet State average* for similar students
- **Developing:** results are below State average* for similar students
- **Ineffective:** Results are well-below State average* for similar students

| | N/A |

### 2.2(G)-i: Technical Documentation Related to Fairness: TEST TAKERS

Consistent with the new Testing Standards (2014), there is an increased focus in the industry on fairness of assessments and their uses. Please provide evidence of fairness for both the proposed assessment and, if applicable, the proposed growth model.

This application includes evidence that the proposed assessments are fair to all test takers (e.g., Differential Item Functioning [DIF] / bias information, fairness evaluation / sensitivity review plan.)

| | N/A |

### 2.2(G)-ii: Technical Documentation Related to Fairness: TEACHER GROWTH SCORES

This application includes evidence of fairness of the proposed aggregated teacher growth scores (e.g., lack of correlation between aggregated teacher growth scores and student demographics).

The evidence of fairness of the proposed aggregated teacher growth scores includes an explanation of how the growth model incorporates (a) prior academic history, (b) poverty, (c) students with disabilities, and (d) English language learners.

| | N/A |
To be completed by the Copyright Owner/Assessment Representative of the assessment being proposed and, where necessary, the co-applicant LEA:

<table>
<thead>
<tr>
<th>FastBridge Learning, LLC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name of Organization (PLEASE PRINT/TYPEx)</td>
<td></td>
</tr>
<tr>
<td>4. Signature of Authorized Representative (PLEASE USE BLUE INK)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terri Lynn Soutor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Name of Authorized Representative (PLEASE PRINT/TYPEx)</td>
<td>March 7, 2016</td>
</tr>
<tr>
<td>5. Date Signed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chief Executive Officer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Title of Authorized Representative (PLEASE PRINT/TYPEx)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N/A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name of LEA (PLEASE PRINT/TYPEx)</td>
<td></td>
</tr>
<tr>
<td>4. Signature of School Representative (PLEASE USE BLUE INK)</td>
<td></td>
</tr>
</tbody>
</table>

|  |
|-------------------------|---|
| 2. School Representative’s Name (PLEASE PRINT/TYPEx) | 5. Date Signed |
| 3. Title of School Representative (PLEASE PRINT/TYPEx) |  |