
NYSED Office of Curriculum & Instruction
Aligning Local Curricula
The Goal and Objectives

Goal:
- To facilitate the use of the guide titled, “Aligning Local Curricula to the Next Generation Mathematics Learning Standards (2017)”, a resource created by a committee of New York State educators, to support school districts and teachers in their process of aligning new and existing curricula to the Next Generation Mathematics Learning Standards.

Objectives:
- Reflect upon a process for aligning standards-based curricula;
- Facilitate conversations about curricular decisions;
- Introduce important types of revisions;
- Share curricular resources for implementing the Next Generation Mathematics Learning Standards.
NYS Next Generation Implementation Timeline
Where Does Curriculum Alignment Fit in?

September 2017:
Adoption of Next Generation Learning Standards

Phase I
Raise Awareness
(Winter 2018 – Winter/Spring 2019)
- Professional development on NYS Next Generation Learning Standards
- Two-day assessments measuring the 2011 P-12 Learning Standards

Phase II
Build Capacity
(Spring 2019 - Summer 2021)
- Professional development continuing on NYS Next Generation Learning Standards
- Two-day assessments measuring the 2011 P-12 Learning Standards

Phase III
Full Implementation
(September 2021 - ongoing)
- Full implementation of the NYS Next Generation Learning Standards

Spring 2022:
New Grades 3-8 tests measuring the NYS Next Generation Learning Standards.
Algebra I Regents aligned in June 2023
Curriculum decisions are locally determined and this alignment guide is an optional resource for school districts to utilize.

This document is designed to assist New York State school districts in the curriculum alignment process so educators are empowered to do this work.
Learning Standards and Curriculum
What is the difference? Turn and Talk …

Turn and Talk…

With your partner/group, consider the following:

- Come up with a visual that best represents the relationship between the terms standards, curriculum, assessment, and instruction and the impact those terms have on student learning.

Group Share Out…

- What are the common themes displayed in the visuals?
- How do those themes shape curriculum development?
Learning Standards and Curriculum

What is the difference?

- **Standards:** The *knowledge, skills and understanding* that individuals can and do habitually over time because of instruction and learning experiences.

- **Curriculum:** Weaves the learning standards into a *story that builds the capacity of the learner* to access and apply what has been learned.

- **Curriculum resources:** The materials a district chooses after defining their local curriculum. Well-chosen resources support teachers’ delivery of developmentally appropriate, standards-aligned, and culturally-responsive instruction to all students.

- **Instruction:** Effective teaching that engages students in meaningful learning through individual and collaborative experiences that promote their ability to make sense of mathematical ideas and reason mathematically.¹

- **Assessment:** As with any set of standards, they need to be rigorous; they need to demand a balance of conceptual understanding, procedural fluency and application and represent a significant level of achievement in mathematics that will enable students to successfully transition to post-secondary education and the workforce.

¹. Principles to Actions: Ensuring Mathematical Success for all, NCTM
Key messages:

- The EngageNY Mathematics modules will continue to be a free resource available for educator use. However, NYSED will not be updating the modules to align with the New York State (NYS) Next Generation Mathematics Learning Standards.

- Since the modules are free and an open-source, a school district may adapt the lessons to ensure they align with the Next Generation Mathematics Learning Standards and meet the needs of their local school district.
Awareness of the Changes in the Standards
The Results of Standards Review: What happened?

- **Movement of Standards** to different grade levels to improve the focus of major content and skills for each grade-level and course; providing more time for students to develop deep levels of understanding of grade-level appropriate content;

- **Clarification of Standards** to make expectations more clearly defined, without limiting instructional flexibility;

- **Addition and Consolidation** of Standards to improve coherence, focus and reduce redundancy amongst grade levels;

- **Maintain the Rigor** of the Standards by improving the balance of conceptual understanding, procedural skill and application;

- Provide opportunities for students to **Explore** certain standards to ensure that the standards are grade-level appropriate. Exploring a standard allows a student to be introduced to and learn a concept without the expectation of mastering the concept at that grade level.
Awareness of the Changes in the Standards
Where to Go? The Standards Document

NYS Next Generation Mathematics
Learning Standards Document

Grade 6 Overview

In Grade 6, instructional time should focus on five areas: (1) connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems; (2) completing understanding of division of fractions and extending the notion of number to the system of rational numbers, which includes negative numbers; (3) writing, interpreting, and using expressions and equations; (4) deepening understanding of area, surface area and volume; and (5) developing understanding of simple probabilities and statistical thinking. Please note that while every standard/topic in the grade level has not been included in this overview, all standards should be included in instruction.

1. Through their learning in the Ratios and Proportional Relationships domain, students:
 - use reasoning about multiplication and division to solve ratio and rate problems about quantities;
 - connect understanding of multiplication and division with rates by viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative size of quantities; and
 - expand the scope of problems for which they can use multiplication and division to solve problems.

2. Through their learning in the Number System domain, students:
 - use the meaning of fractions and relationships between multiplication and division to understand and extend their previous understandings of number and the ordering of numbers to the full system of rational numbers, particularly negative integers; and
 - reason about the order and absolute value of rational numbers and about the location of points.

3. Through their learning in the Expressions, Equations, and Functions domain, students:
 - write expressions and equations that correspond to given situations, using variables to represent unknown quantities and expressions to represent generalizing relationships;
 - understand that expressions in different forms can be equivalent, and use properties of operations to transform equations into equivalent forms;
 - use properties of operations and the idea of maintaining the equality of both sides of an equation;
 - extend formulas for the area of a right rectangular prism to fractional side lengths and use these formulas to solve problems involving volume.

4. Through their learning in the Geometry domain, students:
 - extend concepts of area on the plane and volume in space to include irrational number as side lengths and extend these concepts to include angles (teaching the Pythagorean theorem);
 - understand the probability of a chance event and develop probability models for simple events.

5. Through their learning in the Statistics and Probability domain, students:
 - learn to collect, summarize, and describe numerical data sets, identifying clusters, peaks, gaps, and outliers, and linking these to the context.
 - understand the probability of a chance event and develop probability models for simple events.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Domain: Operations and Algebraic Thinking

NY-3.OA
Solve problems involving the four operations, and identify and extend patterns in arithmetic operations.

8. Solve two-step word problems posed with whole numbers and having whole-number answers using the four operations.
 a. Represent these problems using equations or expressions; a letter standing for the unknown quantity.
 b. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
9. Identify and extend arithmetic patterns (including patterns in the addition table or multiplication table).

Connecting the Standards for Mathematical Practice to Mathematical Content:

- Students will analyze a number of situation types for multiplication and division, including arrays and measurement contexts. Extending their understanding of multiplication and division to these situations requires that they make sense of problems and persevere in solving them (MP.1). Look for and make use of structure (MP.7) as they model these situations with mathematical forms (MP.4) and attend to precision (MP.6) as they distinguish different kinds of situations over time (MP.3).
Awareness of the Changes in the Standards
Where to Go? Grade-Level Snapshots

New York State Next Generation Mathematics Learning Standards

This document is intended to help educators identify the key changes that have occurred to the content standards for this grade level/course and to assist with designing curriculum and lessons aligned to the NYS Next Generation Mathematics Learning Standards. This document does not contain the comprehensive list of learning standards for the grade level/course. The complete list of standards for the grade level/course can be found at NYS Next Generation Mathematics Learning Standards.

Grade 7 Snapshot

Standards New to Grade 7

NY-7.SP.1 Construct and interpret box-plots, find the interquartile range, and determine if a data point is an outlier (box-plots are no longer introduced in grade 6). Students are not expected to construct box-plots that include outliers in the data, but they are expected to interpret box-plots that may contain outliers.

Standards Moved from Grade 7

7.SP.1 Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences. Moved to grade 6 (NY-6.SP.1.b).

7.SP.2 Move grade multiple samples to grade 6 (NY-6.SP.1.c). Merged “use data from a random sample to draw inferences about a population with an unknown characteristic of interest” into standard NY-7.SP.4.

7.SP.5.b Probability of simple events, these standards were moved to grade 6 (NY-6.SP.6, 7, 8, 8a, 8b).

Highlights/Instructional Considerations

NY-7.RP.1 Problems may include ratios of lengths, areas, and other quantities measured in like or different units, including across measurement systems.

NY-7.RP.2a Students may utilize a strategy of their choice when deciding whether two quantities are in a proportional relationship.

NY-7.RP.3 Percent problems include simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, and percent error.

NY-7.NS.3 Computations with rational numbers extend the rules for manipulating fractions to complex fractions.

NY-7.EE.4 Solving equations that contain variables on both sides is not an expectation in grade 7.

NY-7.EE.4a Leading to may require students to simplify or combine like terms on the same side of the equation before it is in the form stated in the standard.

NY-7.EE.4b Added $px + q = r$ and $px + q = r$, Leading to may require students to simplify or combine like terms on the same side of the equation before it is in the form stated in the standard.

NY-7.G.2 Draw triangles when given measures of angles and sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

NY-7.G.3 Plane sections are parallel or perpendicular to the base of right rectangular prisms and right rectangular pyramids.

NY-7.GA Students are applying the formulas for the area and circumference of a circle to solve problems, no informal derivation of relationship between circumference and area of a circle. Students are not expected to calculate the radius of a circle given its area.

NY-7.G.S Solving equations for an unknown angle in a figure will involve linear expressions on one side of the equation. Solving equations that contain variables on both sides is not an expectation in grade 7.

NY-7.G.S Quadilaterals is replaced with trapezoids and the inclusive definition of trapezoid will be utilized, which implies parallelograms are included; surface area problems involve right prisms and right pyramids composed of triangles and trapezoids; volume problems involve right triangular prisms and right rectangular prisms; right prisms include cylinders.

NY-7.SP.4 Students do not need to measure the difference between the centers by expressing it as a multiple of a measure of variability, they are informally assessing the degree of visual overlap of two quantitative data distributions.

NY-7.SP.4 Measures of center are mean, median, and mode. The measures of variation include range and the interquartile range.
Awareness of the Changes in the Standards

Where to Go? Grade-level Crosswalks

Crosswalk: Two-column Side by Side

<table>
<thead>
<tr>
<th>New York State Next Generation Mathematics Learning Standards</th>
<th>Grade 7 Crosswalk</th>
<th>Statistics and Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster</td>
<td>NY P-12 CCLS</td>
<td>NY Next Generation Learning Standard</td>
</tr>
<tr>
<td>Draw informal comparative inferences about two populations.</td>
<td>7.S.P.2 Informally assess the degree of visual overlap of two normal data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviations) of either team; on a dock, the separation between the two distributions of weights is more than 3 standard deviations.</td>
<td>STANDARD REMOVED</td>
</tr>
<tr>
<td>Use measures of center and measures of variability for normal data from random samples to draw informal comparative inferences about two populations.</td>
<td>7.S.P.4 Use measures of center and measures of variability for normal data from random samples to draw informal comparative inferences about two populations. For example, the words in a chapter of a fourth-grade science book are generally longer than those in a chapter of a fourth-grade science book.</td>
<td>STANDARD REMOVED</td>
</tr>
<tr>
<td>Investigate chance processes and develop, use, and evaluate probability models.</td>
<td>7.S.P.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.</td>
<td>STANDARD REMOVED</td>
</tr>
<tr>
<td>Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.</td>
<td>7.S.P.6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.</td>
<td>STANDARD REMOVED</td>
</tr>
<tr>
<td>Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.</td>
<td>7.S.P.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.</td>
<td>STANDARD REMOVED</td>
</tr>
</tbody>
</table>
Awareness of the Changes in the Standards
Where to Go? The Toolkit

Let's Talk Crosswalk and Next Gen Crosswalk Toolkit
Part I: Preparation
Collaborative Structures

Turn and Talk…

With your partner, consider the following:

- What are the “Big” changes that have occurred within your grade-level/grade-level band or course that will have the greatest impact on curriculum development?
- What collaborative structures does your district already have in place to support curriculum development?
- What challenges exist?
- What components need to be a part of this process in order to make sure that the curriculum supports all students?

Curriculum Review and Development is a process that involves continuous ongoing collaboration and conversation.

Educators Need to Consider:

- What clarifications/limitations to the standards have been established?
- What grade level/course standards have been added or removed?
- What changes in the language of the standards will affect instructional decisions?
- How will changes in the standards influence student understanding and how performance is measured?
- What grade level/course standards have shifted to a grade level above or below?
Part I: Preparation

Additional Curricular and Supplementary Resources You Should Know About
Part I: Preparation
More Additional Curricular and Supplementary Resources You Should Know About

“No set of grade-specific standards can fully reflect the variation in learning profiles, rates, needs, linguistic backgrounds, and achievement levels of students in any given classroom. When designing and delivering mathematics instruction, educators must consider the cultural context and preceding academic experiences of all students while connecting prior knowledge to new knowledge and ensuring that content is meaningful and comprehensible.”

Culturally Responsive Sustaining Education Framework
Blueprint for Improved Results for Students with Disabilities
Blueprint for English Language Learner Success
A list of curricular resources is never exhaustive!

Turn and Talk…

With your partner/group, discuss the following:

- What additional resources does your district utilize for mathematics curriculum development?
Part I: Preparation

Design Principles for Standards Alignment

| The Foundations for Effective Mathematics Curricula and Instruction | **Focus** is the emphasis on the major concepts within a domain. | **Coherence** refers to the progression of mathematics within and across the grade levels. | **Rigor** refers to ensuring the proper balance of conceptual understanding (C-R-A), procedural fluency and application. |
Part II: Examining current Local Curricula
What to Do When A Standard…

- is completely **NEW** to the grade level?
- has **CLARIFICATIONS ADDED** or has been split up into sub-standards?
- has been **MOVED/REMOVED**?
- has **NEW NOTES** added?
- has **NEW SUPPORTING EXAMPLES** and/or **ILLUSTRATIONS**?
- is an **EXPLORE** standard?
- is a new and/or additional **PRE/POST-TEST** standard?
Part II: Examining Current Local Curricula

Standard Progression Analysis Tool

Looking at:

- Standard/Skills
- Within Grade Connections
- Foundational Knowledge
- Subsequent Knowledge
- Potential Gaps
Now, it is your turn...

<table>
<thead>
<tr>
<th>Foundational Knowledge</th>
<th>Within Grade Connections</th>
<th>Subsequent Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Generation Mathematics Learning Standards document</td>
<td>Next Generation Mathematics Learning Standards document</td>
<td>Achieve the Core Coherence Map</td>
</tr>
<tr>
<td>Achieve the Core Coherence Map</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glossary of Verbs Associated with the NGMLS
Part II: Examining Current Local Curricula
Examine, Analyze, and Study Activity

Table Work:

- Pick a grade-level standard that reflects one of the seven cases listed.
- Discuss and answer the guiding questions provided specific to your case, in the guide found on pages 10-14.
- Complete the progression analysis template for your grade-level standard.

When a standard:

- is completely NEW to the grade level?
- has CLARIFICATIONS ADDED or has been split up into sub-standards?
- has been MOVED/REMOVED?
- has NEW NOTES added?
- has NEW SUPPORTING EXAMPLES and/or ILLUSTRATIONS?
- is an EXPLORE standard?
- is a new and/or additional PRE/POST-TEST standard?
How Do You Identify Meaningful Tasks?

Notice and Wonder

What Do You Notice?

Patterns—Original

The table of value below describes the perimeter of each figure in the pattern of blue tiles. The perimeter P is a function of the number of tiles t.

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

1. Choose a rule to describe the function in the table.
 A. P = t + 3
 B. P = 4t
 C. P = 2t + 2
 D. P = 6t - 2

2. How many tiles are in the figure if the perimeter is 20?

3. Graph the function.

Patterns—Modified

The diagram below shows the first four figures in the square pattern. The first figure has one square. For each additional figure, one new square is added.

1. Compute the perimeter of the first four figures.
2. Draw the fifth and sixth figures and compute their perimeters.
3. Describe in words how to draw the 10th figure and what the perimeter would be.
4. Describe how to find the perimeter of the 100th figure and explain how the description relates to the pattern of tiles.
5. Write a rule to relate the perimeter P to the number of tiles t. Explain how each part of your formula relates to the tile pattern.
6. Graph the function. Why does it make sense that the graph has the shape it does in relation to the pattern?

Part III: Identifying Meaningful Tasks

Standards for Mathematical Practice (SMP)

Turn and Talk...

- What is the importance of students engaging in activities that merge content with practice?
- How do you already promote the practices within your curriculum?
- How could you further promote the practices within your curriculum?
- Specific to the grade-level standard chosen, how would you engage the students in the SMP?

- **Make sense of problems and persevere in solving them**
- **Use appropriate tools strategically**
- **Reason abstractly and quantitatively**
- **Attend to precision**
- **Look for and make use of structure**
- **Look for and express regularity in repeated reasoning**
- **Construct viable arguments and critique the reasoning of others**
- **Model with mathematics**
Part III: Identifying Meaningful Tasks
Unpacking Grade-level Standards: Page One

What is the unifying idea of the cluster?
Does this unifying idea need to be modified based on standard changes that have occurred in the cluster/domain?

Has the standard been re-written to give a different emphasis or to be more inclusive?

Measurable and Observable statements that describe what success looks like when the learning goal is reached.

What foundational and supporting standards have been revised, moved or eliminated?
What will the effect be?
Part III: Identifying Meaningful Tasks
Unpacking Grade-level Standards

What should be the integral parts of lessons surrounding a content standard?

- Tap In
- Develop Conceptual Understanding
- Make Connections

Concrete Representational Abstract

x^2 - 4x + 4 = 13

Compare solution strategies
Completing the Square vs. Quadratic Formula

\[
\frac{4 \pm \sqrt{52}}{2}
\]

Do the methods of solution yield the same results? Examine the graph.
Part III: Identifying Meaningful asks
Unpacking Grade-level Standards Activity

Table Work:
- Using your standard progression analysis template as a guide, identify meaningful tasks specific to your standard.
- Complete an unpacking document template for your standard.
The clusters of the NYS CCLSM are divided into three categories recommended for instructional and assessment emphasis. These categories are major clusters, supporting clusters and additional clusters. Through the school year 2020-2021, NYS’s grades 3-8 assessments aligned to the NYS P-12 CCLSM will reflect these content emphases.

When the NYS Next Generation Mathematics Learning Standards are implemented, which is school year 2021-2022 for grades 3-8, these content emphases will no longer be applicable. They will however, still be in effect for the High School courses until they transition over to the NYS Next Generation Mathematics Learning Standards. At that point, there will be no labels of Major, Supporting, and Additional.

Local work surrounding the prioritizing of the NYS Next Generation Mathematics Learning Standards can help educators identify and understand how collectively content standards of a grade level work together. What are the areas of “focus” for the grade levels? Grade-level overviews found in the NYS Next Generation Mathematics Standards document would be a good discussion starting point for that work. Work centered around identifying within-grade level connections that support the areas of focus might be something for your educators to engage in.
Part IV: Evaluation – Putting it All Together

Final Thoughts

What are your next steps for curriculum development and alignment?
In what ways is the guide helpful for curriculum alignment?
What are some final thoughts or questions for the group?
Where can you find more information to benefit curriculum alignment?

Moving Forward
Part IV: Evaluation – Putting it All Together
Final Thoughts – A Rubric

<table>
<thead>
<tr>
<th>Grade</th>
<th>Mathematics Lesson/Unit Title</th>
<th>Overall Rating</th>
</tr>
</thead>
</table>

I. Alignment to the Depth of the CCSS
- The lesson/unit aligns with the letter and spirit of the CCSS:
 - Targets a set of grade-level/CCSS mathematics standard(s) to the full depth of the standards for teaching and learning.
 - Standards for Mathematical Practice that are central to the lesson are identified, handled in a grade-appropriate way, and well connected to the content being addressed.
 - Presents a balance of mathematical procedures and deeper conceptual understanding inherent in the CCSS.

II. Key Shifts in the CCSS
- The lesson/unit reflects evidence of key shifts that are reflected in the CCSS:
 - Focus: Lessons and units targeting the major work of the grade provide an especially in-depth treatment, with especially high expectations. Lessons and units targeting supporting work of the grade have visible connection to the major work of the grade and are sufficiently brief. Lessons and units do not hold students responsible for material from later grades.
 - Coherence: The content develops through reasoning about the new concepts on the basis of previous understandings. Where appropriate, provides opportunities for students to connect knowledge and skills within or across clusters, domains and learning progressions.
 - Rigor: Requires students to engage with and demonstrate challenging mathematics with appropriate balance among the following:
 - Application: Provides opportunities for students to independently apply mathematical concepts in real-world situations and solve challenging problems with persistence, choosing and applying an appropriate model or strategy to new situations.
 - Conceptual Understanding: Develops students’ conceptual understanding through tasks, brief problems, questions, multiple representations and opportunities for students to write and speak about their understanding.
 - Procedural Skill and Fluency: Expect, supports and provides guidelines for procedural skill and fluency with core calculations and mathematical procedures (when called for in the standards for the grade) to be performed quickly and accurately.

III. Instructional Supports
- The lesson/unit is responsive to varied student learning needs:
 - Includes clear and sufficient guidance to support teaching and learning of the targeted standards, including, when appropriate, the use of technology and media.
 - Uses and encourages precise and accurate mathematics, academic language, terminology and concrete or abstract representations (e.g., pictures, symbols, expressions, equations, graphics, models) in the discipline.
 - Engages students in productive struggle through relevant, thought-provoking questions, problems and tasks that stimulate interest and elicit mathematical thinking.
 - Addresses instructional expectations and is easy to understand and use.
 - Provides appropriate level and type of scaffolding, differentiation, intervention and support for a broad range of learners.
 - Supports diverse cultural and linguistic backgrounds, interests and styles.
 - Provides extra supports for students working below grade level.
 - Provides extensions for students with high interest or working above grade level.

IV. Assessment
- The lesson/unit regularly assesses whether students are mastering standards-based content and skills:
 - Is designed to elicit direct, observable evidence of the degree to which a student can independently demonstrate the targeted CCSS.
 - Assesses student proficiency using methods that are accessible and unbiased, including the use of grade-level language in student prompts.
 - Includes aligned rubrics, answer keys and scoring guidelines that provide sufficient guidance for interpreting student performance.

A unit or longer lesson should:
- Recommend and facilitate a mix of instructional approaches for a variety of learners such as using multiple representations (e.g., including models, using a range of questions, checking for understanding, flexible grouping, pair-share).
- Gradually remove supports, requiring students to demonstrate their mathematical understanding independently.
- Demonstrate an effective sequence and a progression of learning where the concepts or skills advance and deepen over time.
- Expect, support and provide guidelines for procedural skill and fluency with core calculations and mathematical procedures (when called for in the standards for the grade) to be performed quickly and accurately.

A unit or longer lesson should:
- Use varied modes of curriculum-embedded assessments that may include pre-, formative, summative and self-assessment measures.