PUBLICLY AVAILABLE SERVICES SUMMARY

This form will be posted on the New York State Education Department’s Web site and distributed through other means for all applications that are approved in conjunction with this RFQ to allow districts and BOCES to understand proposed offerings in advance of directly contacting Assessment Providers regarding potential further procurements.

<table>
<thead>
<tr>
<th>Assessment Provider Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name of Assessment Provider:</strong></td>
</tr>
<tr>
<td><strong>Assessment Provider Contact Information:</strong></td>
</tr>
<tr>
<td><strong>Name of Assessment:</strong></td>
</tr>
<tr>
<td><strong>Nature of Assessment:</strong></td>
</tr>
</tbody>
</table>

What are the grade(s) for which the assessment can be used to generate a 0-20 APPR score? aimsweb assesses essential academic skills using a method of brief, reliable, and valid assessment called curriculum-based measurement (CBM). These general outcome measures can be used to monitor and report student progress and growth for grades K-8. Because of this, states are approving aimsweb as an assessment tool for educator effectiveness.

What are the subject area(s) for which the assessment can be used to generate a 0-20 APPR score? The aimsweb measures may be used to demonstrate improvement, show progress, and report growth in the specific curriculum areas listed below. The grade levels for aimsweb assessment vary by their content area.
- ELA
- Math

What are the technology requirements associated with the assessment? aimsweb is web-based and requires no network or computer-based installation. See Appendix 8 for minimum system requirements and prerequisite items for general use.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the assessment available, either for free or through purchase, to other districts or BOCES in New York State?</td>
<td>☑ YES</td>
</tr>
</tbody>
</table>

Please provide an overview of the assessment for districts and BOCES. Please include:
- A description of the assessment;
- A description of how the assessment is administered;
- A description of how scores are reported (include links to sample reports as appropriate);
- A description of how the Assessment Provider supports implementation of the assessment, including any technical assistance. (3 pages max)

**aimsweb®** is an assessment, reporting, and data-organization system designed to support screening, progress monitoring, and Response to Intervention (RTI). It provides brief, nationally normed assessment instruments for universal screening and progress monitoring in reading, language arts, and mathematics. It is designed to enable teachers to monitor the progress of their students, determine effectiveness of instruction, and manage student assessment data—all through one online system—before student failures occur.

Through universal screening and benchmarking, **aimsweb** identifies and groups students according to risk. Student performance is reported three times per year relative to established cut scores and national or local norms. Progress monitoring enables more frequent assessment to demonstrate growth toward individualized goals and to document response to instructional changes. This scalable solution is cost effective, flexible, and sustainable.

**aimsweb** screening and progress monitoring assessments are designed to be administered within minutes, so students can return to their regular schedules. In fact, most measures take only one to four minutes to administer. Math Concepts and Applications and Math Computation take eight to 10 minutes.

All **aimsweb** measures can be individually administered. Some can be group administered.

Examiners can use browser-based scoring to administer and score select **aimsweb** measures online. Scores are automatically captured, calculated, and uploaded to the **aimsweb** data system. This data capture technology enables on-the-fly administration and scoring for oral response assessments. As the student reads the test and gives oral responses, the administrator simply clicks or taps the student’s errors onscreen and the system will score the assessment and upload the results. Reports are available right away.

Browser-based scoring can be used on personal computers (PC or Mac) or on almost any web-enabled device with a supported browser, including desktop/laptop (PC and Mac), netbook, and tablet (iPad).
If manual options are preferred, all aimsweb measures can be administered by paper and pencil and results entered into the system. As scores are entered and saved, reports become available immediately through the data system.

Assessments are available as PDFs, are easily accessed, and can be viewed and printed within the user interface.

New York educators and students will benefit from multiple features that make aimsweb well suited for inclusion as part of an educator effectiveness evaluation system, including the following:

- Its measures are administered at the beginning and end of the year (as well as in the middle of the year) for benchmarking and screening, so aimsweb provides empirical growth information spanning the widest possible time interval.
- aimsweb has a large national database gathered over many years that provides strong research support for the analysis of growth.
- The measures are time-efficient to administer and score.
- Each measure has equivalent forms in fall, winter, and spring, so growth can be assessed through raw-score change across time.
- aimsweb incorporates a rate of improvement (ROI) metric, which is the amount of raw-score growth divided by the number of weeks—that is, the average raw-score increase per week.
- Finally, aimsweb has Student Growth Percentiles (SGP) that indicate how a student's ROI compares with the ROIs of students in a national sample who are in the same grade and who started the year at a similar level of performance.

Providing Technical Support. Responsive support from Pearson is included as part of an aimsweb subscription (all users). Support is available by phone, email, message board, and in-software help.

The number to call for support is 866.313.6194. When you call this number, Monday through Friday, you can select one of the following groups for support:
- Technical Support (7 a.m.–6 p.m.)
- Sales (8 a.m.–5 p.m.)
- Training (8 a.m.–5 p.m.)
- Order/Billing inquiries (8 a.m.–5 p.m.)

The aimsweb toll free fax number is 866.313.6197, and website address is www.aimsweb.com. At the website, you will find a Customer Login as the gateway to online resources.

Additional support is available through our training and consulting services. aimsweb training and consulting services—including onsite, web-based, and other forms of consultation—are organized to provide top-quality ongoing training, coaching, and capacity building. Training materials including user guides are available for all users by download from within the aimsweb interface.
Please provide an overview of the student-level growth model or target setting model for SLOs for districts and BOCES, along with how student-level growth scores are aggregated to the create teacher-level scores, and how those teacher-level scores are converted to New York State’s 0-20 metric.

The foundation of the aimsweb approach to educator effectiveness evaluation is the Student Growth Percentile (SGP). This indicator describes the rate of growth of an individual student relative to the rates of growth shown by same-grade students with similar initial scores in a large, representative national norm sample.

The procedure for converting scores on aimsweb measures into Student Growth Percentiles and, then, into an Educator Growth Percentile is as follows.

**Calculating Student Growth Percentiles**

aimsweb calculates a rate of improvement (ROI) for each student on each measure by dividing the raw-score change between two benchmark administrations by the actual number of calendar weeks between those administrations. Thus, the ROI is the student’s average amount of raw-score growth per week.

Each student’s ROI is converted to a SGP, which is the percentage of students in a large, representative national norm sample whose ROI is lower than a particular value. For example, if on R-CBM (oral reading) a student has a Fall-Spring ROI of 1.05 and an SGP of 35, we know that this student’s ROI is greater than the ROIs of approximately 35 percent of the students in the national norm sample. In other words, this student’s rate of improvement from fall to spring was slower than the national average for his or her peers.

(It is important to note that the aimsweb SGP is not related to the student growth percentile growth model. Instead, aimsweb uses a gain score model in which the student takes parallel forms of a test at the beginning and end of the school year—or semester—and the increase in raw score is interpreted normatively.)

There is a separate SGP norm sample for each grade and, within grade, for each of five levels of initial performance (fall benchmark score for fall-winter and fall-spring SGP norms, and winter benchmark score for winter-spring SGP norms). The five levels are percentile ranges of 1-10, 11-25, 26-75, 76-90, and 91-99. Therefore, a student’s SGP indicates how that student’s rate of growth compares with the growth rates of other students in the same grade who started the year (or semester) at about the same level of performance. Differentiating the SGP norms by initial level provides a more fair comparison, because rates of improvement tend to differ for students who are relatively high performing or low performing initially.

There is a general tendency for ROIs to be relatively low for students who are initially at the lowest level (bottom 10 percent) or the highest level (top 10 percent). Between those ranges, average ROIs tend to be higher, but decline as initial score level increases. The causes of these patterns are not known, but it is plausible that regression to the mean and ceiling effects contribute to the lower ROIs for students with higher initial levels, and that the relatively slow growth of those students with the lowest initial scores reflects factors that contributed to their low initial status.
**aimsweb SGPs range from 5 to 95 in increments of 10. An SGP of 5 represents the range from the 1st to the 10th percentile; an SGP of 15 includes the 11th to 20th percentiles, and so on. SGPs are reported in increments of 10 because growth measures are difference scores and, as such, are less precise than individual scores. Therefore, a less fine-grained percentile scale is appropriate.**

**Calculating Educator Growth Percentiles**

In the **aimsweb aGREE** system, the SGPs of an educator’s students are “averaged,” and this average is converted to a percentile score by comparing it to the averages obtained by a representative sample of educators.

If a teacher were average in effectiveness, we would expect the teacher’s students to have a range of SGPs centered near 45 or 55. That is, the teacher’s average student would have improved at about the typical rate for students in the national norm sample who started the year at a similar level of performance. This would be true regardless of whether the students as a group were average, high performing, or low performing.

**aGREE** calculates an educator average for each teacher based on the average SGP of the teacher’s students. The system first matches students with teachers according to domain (reading or math) and time (fall-spring, fall-winter, or winter-spring); if desired, student weights can be applied. Educator averages are calculated using a mathematical procedure (z transformation) that is appropriate for use with percentiles. The mean is used, rather than the median, so that every student’s SGP influences the educator average.

For teachers at kindergarten through grade 5, percentile norms were created for the educator averages by assembling norm samples of teachers drawn from the **aimsweb** database, grouped by grade, **aimsweb** measure, or combination of measures, and time interval for growth. Data came from the 2012-2013 school year. The norm samples at kindergarten through grade 5 contained several hundred teachers for each measure at each grade. In each sample, the standard deviation of educator averages was calculated. This standard deviation, along with an assumed mean of 0, was then used to estimate the percentile value for any given educator average (i.e., the Educator Growth Percentile).

A different method was used for teachers at grades 6-8, because at these grades the great majority of students were associated with more than one teacher, and it was not possible to match students with teachers by domain (reading or math). Instead, we applied the relationship between variability in school-level educator averages (i.e., the educator average for all students in a school) and teacher-level educator averages that had been observed at grades K-5. At those lower grades, the teacher-level standard deviation was consistently 1.25 times as large as the school-level standard deviation. Therefore, the teacher-level standard deviations for grades 6-8 were estimated by multiplying the school-level standard deviations by 1.25.

Educator Growth Percentiles also were constructed for principals, using the same methods as described above for teachers but using all students at a school. The norms are based on educator averages for a national sample of principals.
The aGREE system provides Educator Growth Percentiles for reading, math, and the combination of reading and math (for teachers who teach both subjects, or for principals).

The following is the crosswalk between aimsweb Educator Growth Percentiles (EGP) and the New York State metric.

<table>
<thead>
<tr>
<th>HEDI Score</th>
<th>Highly Effective</th>
<th>Effective</th>
<th>Developing</th>
<th>Ineffective</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-97-95</td>
<td>98-97-95</td>
<td>90-67</td>
<td>42-41</td>
<td>17-16-15</td>
</tr>
<tr>
<td>EGP 6-5-4</td>
<td>6-5-4</td>
<td>4.6-4.1-3.7</td>
<td>4.6-4.1-3.7</td>
<td>4.6-4.1-3.7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This conversion system is designed to align with the percentage of teachers in each category reported in *2013-14 Growth Model for Educator Evaluation: Technical Report* (AIR, 2015).
<table>
<thead>
<tr>
<th>New York State Next Generation Assessment Priorities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Please provide detail on how the proposed supplemental assessment or assessment to be used with SLOs addresses each of the Next Generation Assessment Priorities below.</td>
<td></td>
</tr>
</tbody>
</table>

| Characteristics of Good ELA and Math Assessments (only applicable to ELA and math assessments): | ELA: Three of the five aimsweb ELA measures do not involve reading text (Letter Naming Fluency, Letter Sound Fluency, and Nonsense Word Fluency). R-CBM (Oral Reading Fluency), which is used at grades 1-9, and Maze (grades 2-8), involve reading a narrative passage for 1 minute or 3 minutes, respectively. These passages were written using the Fry grade-based guidelines for number of syllables and sentences per 100 words. They also were evaluated using a number of readability and complexity measures: Lexile, Fry, Flesch, Powers, Spache, and SMOG. Correlations between the indicators and the grade levels at which the passages are used range from .92 to .97, indicating that the passages are appropriate for their grade levels. |
| Assessment Woven Tightly Into the Curriculum: | Math: The aimsweb measures used in kindergarten (Number Identification and Missing Number) assess fluency in performing fundamental tasks based on knowledge of the number system. The measures used at grades 1-8 (Math Computation) and 2-8 (Math Concepts & Applications) were designed to be aligned with the NCTM 2006 standards. |
|  | Please see Appendices 3, 4, and 5 for specific information on correlation to New York and Common Core Standards. |
### Performance Assessment:

The seven **AIMSweb** measures—four in ELA and three in math—recommended for use in educator effectiveness evaluation at kindergarten and grade 1 are entirely performance-based in that the student generates a response: saying the names or sounds of letters, saying the sounds of pseudowords, reading a passage aloud, saying the names of numerals, saying the number that is missing in a sequence, or writing the answer to a math computation problem. Two additional measures are recommended at grades 2 through 8 and these consist partly or wholly of multiple-choice items: Reading Maze, in which the student selects the missing word in a sentence from a set of three options, and Math Concepts & Applications, which includes some multiple-choice questions along with constructed-response items. However, neither of these uses a separate answer sheet—students record their responses in the test booklet. Also, it should be noted that both Reading Maze and Math Concepts & Applications are optional at all grades, meaning that **AIMSweb** may be used in an educator effectiveness program without having to administer any multiple-choice items.

### Efficient Time-Saving Assessments:

**AIMSweb** measures are extremely time-efficient. The individually administered measures take less than five minutes, and the group-administered measures take between five and 10 minutes.

### Technology:

**AIMSweb** measures are designed to be scored immediately by the examiner. Some of the individually administered measures are supported by browser-based administration in which the examiner enters item responses on a computer and receives the score when the administration is finished.

### Degree to which the growth model must differentiate across New York State's four levels of teacher effectiveness (only applicable to supplemental assessments):

According to the national teacher norms on which the **AIMSweb** APPR crosswalk is based, the following percentages of teachers are expected to fall in each of the four HEDI levels: Highly Effective, 13 percent; Effective, 69 percent; Developing, 13 percent; and Ineffective, 5 percent.
Please read each of the items below and check the corresponding box to ensure the fulfillment of the technical criteria outlined in the Technical Application on "FORM B-2".

PLEASE SUBMIT ONE “FORM G” FOR EACH APPLICANT. CO-APPLICANTS SHOULD SUBMIT SEPARATE FORMS).

**COMPLETE THIS SECTION:**

<table>
<thead>
<tr>
<th><strong>2.2(A) Narrative Overview of Proposed Supplemental Assessment and Associated Growth Model</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>This application contains a short overview of the assessment being proposed, including the intended purpose of the assessment, and how the assessment is administered.</td>
</tr>
<tr>
<td>☑</td>
</tr>
<tr>
<td>For supplemental assessments, this application contains a description of the growth model and how it is used in conjunction with the assessment.</td>
</tr>
<tr>
<td>☑ ☐ N/A</td>
</tr>
<tr>
<td>For K-2 assessments, this application contains evidence that the proposed assessment is consistent with this RFQ’s requirement that the assessment not be a “Traditional Standardized Assessment” as defined above in the section “Definitions of Key Terms Used in this RFQ.”</td>
</tr>
<tr>
<td>☑ ☐ N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>2.2(B) Evidence of Capability</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>This application provides an overview of services provided by the Assessment Provider, including a description of the range of support / technical assistance that the Assessment Provider would provide to an LEA if selected by an LEA for this service.</td>
</tr>
<tr>
<td>☑</td>
</tr>
<tr>
<td>This application contains information as to whether the Applicant or Assessment Provider has been denied approval as a provider of assessment services in another state(s) and the reason(s) for such denial. If denied within New York State, the location and reason are indicated.</td>
</tr>
<tr>
<td>☑ ☐ N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>2.2(C): Evidence of Copyright Owner/Assessment Representative History of Assessment Development</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>This application contains evidence that the Copyright Owner/Assessment Representative has a history of developing assessments of student learning (achievement or growth) for the purpose of making defensible judgments about educator effectiveness.</td>
</tr>
<tr>
<td>☑ ☐ N/A</td>
</tr>
</tbody>
</table>
2.2(D)-i: Technical Documentation Related to Assessment and Student Growth Score Properties: RELIABILITY
Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.

For supplemental assessments used in conjunction with growth models:
This application contains evidence of the minimum criteria for reliability:
- Student test scores have adequate levels of reliability (e.g., coefficient alpha > 0.75).

This application contains evidence of the desired criteria for reliability:
- Standard errors provided for students growth scores.
- Student growth classifications have adequate decision consistency.
- Teacher effectiveness classifications demonstrate adequate consistency.
  Examples include agreement statistics (e.g., kappa coefficients) based on simulation studies.

For assessments used in conjunction with SLOs:
This application contains evidence of the minimum criteria for reliability:
- Evidence students’ test scores have adequate levels of reliability (e.g., alternate forms reliability > 0.75).
- Evidence of inter-rater reliability for scoring student's work (e.g., % agreement > .80; intraclass correlation > .75).

This application contains evidence of the desired criteria for reliability:
- Evidence student classifications demonstrate reasonable consistency within and across years.
- Evidence teachers are consistently classified across years (e.g., >.75).
  Examples of evidence are kappa coefficients and other measures of classification consistency based on alternate forms.

2.2(D)-ii: Technical Documentation Related to Assessment and Student Growth Score Properties: VALIDITY – ALIGNMENT
Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.

For supplemental assessments used in conjunction with growth models:
This application contains evidence of the minimum criteria for alignment validity:
- Evidence that test content is sufficiently aligned with New York State Learning Standards and covers a range of measurable standards.
  Documentation that demonstrates that:
  (a) at least 80% of the test measures content aligned with NYS learning standards,
  (b) no more than 20% of test content is aligned with other learning standards or objectives, and
  (c) a range of content from the NYS learning standards is measured
  Note: Other relevant standards can be proposed if NYS Learning Standards do not apply to subject area.

This application contains evidence of the desired criteria for alignment validity:
- 100% alignment between NYS Learning Standards and assessment.
For assessments used in conjunction with SLOs:
This application contains evidence of the *minimum* criteria for alignment validity:
- Evidence test content aligned with specific New York State Learning Standards. Other relevant standards can be proposed if NYS Learning Standards do not apply to subject area.
- Scoring rubrics (if relevant) differentiate different levels of student knowledge and skills.
- Process included to create SLO targets that are aligned with one-year expected academic growth.

This application contains evidence of the *desired* criteria for alignment validity:
- SLO process is randomly audited where baseline and target data are reviewed for appropriateness and alignment, and students' performance is independently scored.
- System of professional development in place for superintendent or his/her designee to set and evaluate SLO targets.

2.2(D)-iii: Technical Documentation Related to Assessment and Student Growth Score Properties: VALIDITY – RELATIONS TO OTHER VARIABLES
Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.

For supplemental assessments used in conjunction with growth models:
This application contains evidence of the *minimum* criteria for validity in relation to other variables:
- Evidence students’ growth scores are correlated with other measures of student progress (e.g., \( r > .5 \) with measures such as the number of objectives mastered by a student over the course of the year, teachers’ ratings of students’ progress, or scores from other assessments).

This application contains evidence of the *desired* criteria for validity in relation to other variables:
- Evidence teacher effectiveness ratings are positively correlated (e.g., \( r > .5 \)) with other measures of teaching effectiveness.

2.2(D)-iv: Technical Documentation Related to Assessment and Student Growth Score Properties: VALIDITY – INTERNAL STRUCTURE
Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.
For supplemental assessments used in conjunction with growth models:
This application contains evidence of the *minimum* criteria for validity of internal structure:
- Scale properties appropriate for growth model used (*see notes*). Total scores and subscores on student assessments should be supported by dimensionality analyses (e.g., IRT residual analyses, factor analyses).

This application contains evidence of the *desired* criteria for validity of internal structure:
- Evidence students’ scores are on an interval scale.

*Notes: If gain score model is used, evidence is needed that students’ pretest and posttest scores are on the same scale. If student growth percentile model used, justification for the number of years included in the model should be provided. If growth-to-proficiency, projection, or value-added models are used, evidence is needed that the model explains a significant amount of variability in student achievement. Also, models should demonstrate robustness to missing data.

For assessments used in conjunction with SLOs:
This application contains evidence of the *minimum* criteria for validity of internal structure:
- If standardized (State or commercial) assessments are used, total scores and subscores should be supported by dimensionality analyses (e.g., IRT residual analyses, factor analyses).

This application contains evidence of the *desired* criteria for validity of internal structure:
- Evidence that students’ performance on different tasks highly correlated (e.g., $r > .5$).

2.2(D)-v: Technical Documentation Related to Assessment and Student Growth Score Properties: UTILITY AND COMPREHENSIBILITY
*Both “minimum” and “desired” qualifications are listed. For the purposes of this RFQ, applications will only be rated against the “minimum” qualifications; however, NYSED’s aspirational “desired” qualifications are also listed to identify possible future requirements for assessments and associated growth models.*

For supplemental assessments used in conjunction with growth models:
This application contains evidence of the *minimum* criteria for utility and comprehensibility:
- Technical documentation that describes how student growth and educator effectiveness are calculated.

This application contains evidence of the *desired* criteria for utility and comprehensibility:
- Student growth reports support instructional improvement. Resources and supporting materials available to the field.

For assessments used in conjunction with SLOs:
This application contains evidence of the *minimum* criteria for utility and comprehensibility:
- Technical documentation that describes how student growth and effectiveness are calculated.
This application contains evidence of the desired criteria for utility and comprehensibility:
- Student growth reports support instructional improvement. Resources and supporting materials available to the field.

### 2.2(E)-i: Technical Documentation Related to Aggregating Student-Level Growth Scores to Teacher-Level Scores: CREATION OF TEACHER LEVEL SCORES

For supplemental assessments used in conjunction with growth models:
This application includes a narrative description of how student-level scores are aggregated to create a single teacher-level score for each teacher.

<table>
<thead>
<tr>
<th>Yes</th>
<th>N/A</th>
</tr>
</thead>
</table>

### 2.2(E)-ii: Technical Documentation Related to Aggregating Student-Level Growth Scores to Teacher-Level Scores: EXCLUSION RULES

This application includes a description of any exclusion rules that remove students associated with a given teacher from the teacher’s teacher-level score (either through a growth model or in conjunction with an SLO).

<table>
<thead>
<tr>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
</table>

### 2.2(F): Technical Documentation Related to Converting Teacher-Level Growth Score to New York State’s 0-20 APPR Scale

This application includes a crosswalk that maps scores on the assessment’s aggregated teacher-level growth score to the required New York State teacher and principal evaluation metric, which ranges from 0-20.

This application includes procedures for converting teacher-level growth scores to the 0-20 APPR scale comply with the New York Standards for each evaluation rating category, which are based on the following definitions.

**For supplemental assessments used in conjunction with growth models:**
This application includes an explanation of the assignment of HEDI rating categories based on the following ranges:
- **Highly Effective:** results are well-above State average* for similar students
- **Effective:** results meet State average* for similar students
- **Developing:** results are below State average* for similar students
- **Ineffective:** Results are well-below State average* for similar students

<table>
<thead>
<tr>
<th>Yes</th>
<th>N/A</th>
</tr>
</thead>
</table>

**For assessments used in conjunction with SLOs:**
This application includes an explanation of the assignment of HEDI rating categories based on the following ranges:
- **Highly Effective:** 90-100% of students meeting individual targets of one year’s expected growth
- **Effective:** 75-89% of students meeting individual targets of one year’s expected growth

| Yes | N/A |
- **Developing**: 60-74% of students meeting individual targets of one year’s expected growth
- **Ineffective**: 0-59% of students meeting individual targets of one year’s expected growth

### 2.2(G)-i: Technical Documentation Related to Fairness: TEST TAKERS

Consistent with the new Testing Standards (2014), there is an increased focus in the industry on fairness of assessments and their uses. Please provide evidence of fairness for both the proposed assessment and, if applicable, the proposed growth model.

This application includes evidence that the proposed assessments are fair to all test takers (e.g., Differential Item Functioning [DIF] / bias information, fairness evaluation / sensitivity review plan.)

### 2.2(G)-ii: Technical Documentation Related to Fairness: TEACHER GROWTH SCORES

This application includes evidence of fairness of the proposed aggregated teacher growth scores (e.g., lack of correlation between aggregated teacher growth scores and student demographics).

The evidence of fairness of the proposed aggregated teacher growth scores includes an explanation of how the growth model incorporates (a) prior academic history, (b) poverty, (c) students with disabilities, and (d) English language learners.

---

**To be completed by the Copyright Owner/Assessment Representative of the assessment being proposed and, where necessary, the co-applicant LEA:**

<table>
<thead>
<tr>
<th>NCS Pearson, Inc. (Pearson)</th>
<th>4. Signature of Authorized Representative (PLEASE USE BLUE INK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Name of Organization (PLEASE PRINT/TYPY)</td>
<td>Alistair Van Moere</td>
</tr>
<tr>
<td>2. Name of Authorized Representative (PLEASE PRINT/TYPY)</td>
<td>February 8, 2016</td>
</tr>
<tr>
<td>3. Title of Authorized Representative (PLEASE PRINT/TYPY)</td>
<td>5. Date Signed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Business Head, Assessment Product Solutions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Title of Authorized Representative (PLEASE PRINT/TYPY)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Name of LEA (PLEASE PRINT/TYPY)</th>
<th>4. Signature of School Representative (PLEASE USE BLUE INK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. School Representative’s Name (PLEASE PRINT/TYPY)</td>
<td>5. Date Signed</td>
</tr>
</tbody>
</table>
3. Title of School Representative (PLEASE PRINT/TYPE)